
1990 IRKXSI/DISSERTATION

A Laboratory Study of the Effect of Stress State on the
( Elastic Moduli of Sand

Martin David Lewis

N

AFIT Student Attending: University of Texas - Austin AFIT/CI/CIA- 90-029D

AFIT/CI
Wright-Pitterson AFB OH 45433-6583

Approved for Public Release IAW 190-1
Distributed Unlimited
ERNEST A. HAYGOOD, 1st Lt, USAF
Executive Officer

OTtC
44 IE--.-ECT E

Q NOVO 21990

409



A LABORATORY STUDY OF THE EFFECT OF STRESS STATE

ON THE ELASTIC MODULI OF SAND

by

Martin David Lewis, B.S., M.S.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

December 1990



Copyright

by

Martin David Lewis

1990



Dedicated to

Marcus and Alice



ABSTRACT

A LABORATORY S-rUDY OF THE EFFECT OF STRESS STATE

ON THE ELASTIC MODULI OF SAND

Major Martin David Lewis, USAF

Doctor of Philosophy

The University of Texas at Austin, 1990

A study was conducted to determine the effect of stress state on

the Young's modulus of an uncemented dry sand. A new laboratory

device was built which uses dynamic wave propagation to determine

independently the constrained (M), Young's (E), and shear (G) moduli

by measuring the dilatational, bar and shear wave velocities,

respectively. The device, called the Multi-Moduli Testing Device (MTD),

can vary the principal stress, in compression or extension, that is

parallel to the longitudinal axis of a cylindrical soil specimen, creating a

state of stress in the specimen where 5-1 > (2 = C-3 or T = - > 673.

The dilatational and shear wave velocities are determined using

pulse test methods. The bar wave velocity is determined using a

longitudinal resonant test method in which the first four natural

frequencies of the specimen are determined. The bar wave velocity is

computed from the natural frequencies using a two-step reduction



process that begins by computing the phase velocity assuming one-

dimensional motion. The second step utilizes the three-dimensional

solution for longitudinal wave propagation in an infinite rod to adjust the

phase velocities. The resulting values for the bar wave velocity are

typically within five percent of each other.

Tests were conducted on a dry, uncemented sand subjected to

isotropic and biaxial stress conditions. The tests showed that when

confined isotropically, all three moduli (M, E and G) could be

adequately described by a relationship involving a constant times the

mean effective stress raised to a power ranging from 0.45 to 0.51.

However, when the sand was subjected to biaxial compression or

extension, it was shown that the principal effective stresses influenced

each modulus differently. For the constrained modulus, the tests

reaffirmed earlier studies which have shown that the principal stress in

the direction of wave propagation almost solely controls the modulus.

This study has shown the new result that Young's modulus is also

dominated by the principal stress in the direction of wave propagation.

However, the principal stresses perpendicular to the direction of wave

propagation have more influence on Young's modulus than the

constrained modulus. (408 pages) Accession For
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longitudinal resonant test method in which the first four natural

frequencies of the specimen are determined. The bar wave velocity is

computed from the natural frequencies using a two-step reduction

process that begins by computing the phase velocity assuming one-

dimensional motion. The second step utilizes the three-dimensional

solution for longitudinal wave propagation in an infinite rod to adjust the

phase velocities. The resulting values for the bar wave velocity are

typically within five percent of each other.

Tests were conducted on a dry, uncemented sand subjected to

isotropic and biaxial stress conditions. The tests showed that when

confined isotropica!ly, all three moduli (M, E and G) could be

adequately described by a relationship involving a constant times the

mean effective stress raised to a power ranging from 0.45 to 0.51.

However, when the sand was subjected to biaxial compression or

extension, it was shown that the principal effective stresses influenced

each modulus differently. For the constrained modulus, the tests

reaffirmed earlier studies which have shown that the principal stress in

the direction of wave propagation almost solely controls the modulus.

This study has shown the new result that Young's modulus is also

dominated by the principal stress in the direction of wave propagation.

However, the principal stresses perpendicular to the direction of wave

propagation have more influence on Yjung's modulus than the
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Chapter One

Introduction

1.1 Background

Research into the dynamic properties of soils over the past three

decades has focused on finding constitutive relationships which best

characterize soils subjected to a broad range of strains. It is understood

that a soil, either in situ or in the laboratory, exhibits a constitutive

relationship more complex than that described by simple linear elasticity.

However, research has shown that at shear strains less than 0.001%,

most soils behave as a linear elastic continuum. The bulk of this

research has been conducted in devices where only an isotropic state of

stress could be applied to the soil. Consequently, it was generally

believed that the first stress invariant, the mean effective stress [0 =1/3

(61 + 6-2 + d3)], controlled all moduli (Young's, shear, constrained, and

bulk) in the same manner. Research during the past decade has shown

this was not completely true, at least for shear and constrained moduli.

A fundamental understanding of the relationships between the

measured dilatational (Vp), shear (Vs) and rod (Vc) wave velocities, the

elastic moduli and the stress conditions under which the velocities are

measured is essential to the successful application of seismic testing in

the laboratory and the field. As it is commonly believed that a cross-

1
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anisotropic model is conceptually a better representation of natural soil, it

is imperative to understand how different states of stress affect the moduli

commonly used to characterize soil stiffness. With this knowledge it may

be possible to continue to extend the use of seismic testing to include

applications such as relating stiffness properties between field and

laboratory specimens and the characterization of in situ stress states.

As an additional note, an elastic continuum assumption implies

that the soil moduli should be unaffected by the frequency at which a

dynamic test is conducted. This was probably a fair assumption when

one considers the frequency range over which most dynamic laboratory

tests have been conducted (1-300Hz). However, the use of devices such

as piezoelectric crystals introduces test methods which are conducted at

frequencies at least one order of magnitude greater than used in the

past. Many civil engineering materials exhibit different stiffness

properties at higher frequencies.

All dynamic laboratory test devices which use methods based on

wave propagation theory can be divided into two principal types:

resonant devices and pulse devices. Resonant devices measure soil

stiffness by first determining a resonant frequency of the soil specimen.

One example is the torsional resonant column with which the shear wave

velocity, and thus, the shear modulus, is determined by measuring the

first-mode resonant frequency in torsion. A second example is the

longitudinal resonant column, with which the bar wave velocity is

determined by measuring the first-mode resonant frequency in the
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longitudinal direction. Although several laboratory devices exist that

were designed to resonate both torsionally and longitudinally, the most

commonly used devices determine only one soil stiffness.

The second group of dynamic testing devices incorporates pulse

methods to measure direct travel times of polarized waves. With the

appropriate combination of sources and receivers, it is possible to

measure the velocities for dilatational and shear waves, and

consequently the constrained and shear moduli can be determined.

Most devices in the past have used mechanical or electromagnetic types

of vibration sources. However, with the advent of piezoelectric crystal

technology, sources capable of operating reliably at higher frequencies

are available for use in laboratory and field testing.

Any of these devices, in their simplest form, can measure soil

stiffness under isotropic conditions and most torsional resonant column

testing is conducted under isotropic states of stress. A limited number of

studies have been conducted using the torsional resonant column device

where an axial compression load was applied (biaxial compression), and

resonant tests on hollow samples has permitted testing under limited

triaxial conditions. But the torsional resonant column can only study the

anisotropic behavior of the shear modulus. It cannot be used to to study

the constrained or Young's moduli. Modifications to the longitudinal

resonant column to allow study of anisotropic states of stress are

inherently more difficult because the device must load the test specimen

axially yet still permit it to resonate dynamically. For this reason,
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research under true triaxial states of stress have commonly used cubic

devices with pulse testing.

Dynamic laboratory testing using pulse methods has been

conducted - both small- (4 in) and large- (7 ft) scale cubic laboratory

devices which had the ability to vary the stress in all three orthogonal

directions. The ability of these test devices to vary the state of stress in

the test sample has led to the discovery during the past decade that the

mean effective stress does not uniquely control a soil's stiffness. Rather,

it has been shown that, for waves polarized along principal stress

directions, the dynamic stiffness of a soil skeleton is controlled by the

state of stress in the line (dilatational wave), or plane (shear wave),

containing the propagating wave and particle motion and was virtually

independent of the stress(es) in the other direction(s). However, cubic

triaxial testing devices using pulse test methods only measure body

wave velocities and cannot measure the bar wave velocity.

In brief summary, the state of the art in laboratory resonant devices

typically results in the measurement of shear modulus or Young's

modulus under isotropic loading. The torsional resonant column has

been modified to conduct tests under biaxial compression or triaxial

states of stress but is not commonly used in this manner. State-of-the-art

pulse devices can measure either the shear or constrained modulus

under isotropic, biaxial and triaxial states of stress. In the writer's

knowledge, no device has been developed which would allow the study

of the effect of state of stress on the Young's modulus of a soil.
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1.2 Goal and Objectives

The primary goal of this research was to study the effect of state of

stress on Young's modulus of the soil skeleton. To accomplish this goal

it was necessary to design and construct a laboratory test device which

could measure the bar wave and dilatational wave velocities of a dry

cohesionless soil under different states of stress. An additional objective

was to measure the shear wave velocity on the same specimen.

Therefore, the main goal was broken into several objectives which are

enumerated briefly in the following list.

(1) Review recent literature for research on testing of soils under

different states of stress, particularly looking for research concerning

Young's and constrained moduli in the linear elastic range.

(2) Design a testing device with which small-strain Young's,

constrained and shear moduli could be independently determined on the

same sand specimen without changing the state of stress. With the

testing device one should be able to:

(a) apply, at a minimum, a biaxial state of stress by

changing the stress in one direction, both in compression and extension;



6

(b) determine the state of stress in the specimen and the

changes in the shape of the specimen resulting from changes in stress;

(c) excite dynamically the specimen in the small-strain

(<0.001%) range and measure its response; and

(d) record and store digitally the dynamic response of the

specimen for future analysis.

(3) Develop a method using the device designed in item 2 to

determine Young's modulus and develop a data reduction technique that

is founded in wave propagation theory.

(4) Study the impact of specimen parameters such as size, shape

and stiffness on Young's modulus determined using the test apparatus

and test method developed in items 2 and 3.

(5) Develop a method for constructing dry sand specimens which

would yield structurally uniform and comparative sand samples.

The research program described in this dissertation explains how

each of these five objectives was accomplished.
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1.3 Organization

The research that is reported in this dissertation describes the

theory, modelling, development and construction of a Multi-Moduli

Testing Device (MTD). The MTD was designed to measure

independently the dilatational, bar, and shear wave velocities from which

the constrained, Young's, and shear moduli could be calculated.

A brief description of recent developments in dynamic laboratory

testing is presented in Chapter Two. Basic concepts used in current

practice are described, with specific emphasis placed on methods to

determine constrained and Young's moduli.

The theoretical development used to analyze and reduce the data

collected using the tests methods employed in the MTD are presented in

Chapter Three and companion Appendices A, B and C. The reader is

encouraged to examine the sections developing a specific case for one-

dimensional wave propagation in a finite cylindrical rod, three-

dimensional wave propagation in an infinite cylindrical rod, and transient

motion in a semi-infinite rod resulting from a sudden impact on the end.

The development of a finite element program using axisymmetric,

finite elements to model cylindrical test specimens in this study is

described in Chapter Four and companion Appendix D. The program

was used to model the three representative soil specimens tested in this

study, a loose sand, a dense sand, and a moderately stiff clay. In the

program the user has the flexibility to specify different specimen
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parameters, such as length, diameter and stiffness, and the appropriate

end conditions. The output from the program is a transfer function that

relates the vertical and horizontal motion at nodes along the top of the

specimen to a unit vertical displacement of the nodes at the bottom of the

specimen. A qualitative study of the effect of the specimen stiffness,

length, diameter, Poisson's ratio and end conditions on the transfer

function is included in this chapter.

The design of the MTD and of each of its major systems is

described in Chapter Five. The MTD is divided into three main systems

which are; (1) Specimen Confinement, (2) Dynamic Excitation, and (3)

Dynamic Monitoring. A detailed list of equipment for each system is

included in Appendix E. The latter part of Chapter Five describes test

specimen preparation and set up. A step by step description for the

preparation of a cohesionless sand specimen using a multiple sieve

pluviating device that was designed and built for this research is included

in Appendix F.

The Axial Pulse and Shear Pulse test methods used to determine

the dilatational and shear wave velocities and the respective constrained

and shear moduli are described in Chapter Six. A description and

justification of the fundamental assumptions in each pulse test is also

included in this chapter, along with an assessment of the potential error

in each of the computed moduli.

The Longitudinal Resonant Column test, which is used to

determine the bar velocity of the test specimen, and thus Young's
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modulus, is described in Chapter Seven. The theoretical developments

described in Chapter Three are applied in this chapter to the data

obtained from the longitudinal resonant column test to yield the bar wave

velocity. An assessment of the assumptions made in reducing the data,

and an estimate of the error in the computed values of Young's modulus,

are also included.

The materials tested, and the results from those tests conducted

during the development of the MTD, are described in Chapter Eight.

These materials included man-made materials, such as polyurethane,

polypropylene, polyvinylchloride and Portland cement concrete, as well

as two natural materials, a compacted clay and the dry sand that was the

focus of this study.

The two test series conducted on the dry sand confined

isotropically at pressures ranging from 4 to 64 psi are described in

Chapter Nine. The constrained, Young's, and shear modulus versus

mean effective stress relationships are calculated and compared to

previous research on the same sand.

Five test series in which the dry sand is subjected to varying

biaxial states of stress are described in Chapter Ten. In these test series,

both the axial and radial stresses are varied independently up to a

maximum effective principal stress ratio of 2.0. The separate influence of

each of the axial and radial effective stresses on the constrained,

Young's, and shear moduli is presented and compared to results from

earlier research on the same sand.
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The dissertation is concluded in Chapter Eleven, in which a

general summary, fundamental conclusions, and recommendations for

further research are presented. This research raised many more

interesting questions and identified more potential study areas than were

possible to address within its original scope. This, in the writer's opinion,

is as valuable a contribution to the profession as the development of the

MTD and the understanding of how state of stress affects Young's

modulus.



Chapter Two

Laboratory Testing Devices to Evaluate Dynamic Moduli of

Soils

2.1 Introduction

The development of dynamic laboratory testing equipment for

determining soil stiffness by measuring velocities of wave propagation

has reached a plateau over the past decade. Lately, most advances

have been confined to optimization and automation of existing test

devices and methods that were initially developed two or more decades

ago. There are two basic groups of dynamic laboratory test devices

available to the geotechnical researcher, those which are based on

resonant methods and those which are based on pulse methods.

This chapter describes the basic concepts associated with each

group of dynamic laboratory test devices and briefly discusses their

capability and limitations. The discussion will be limited to dynamic

laboratory devices which typically test at strains of 103 percent or less.

This precludes discussion of cyclic triaxial and torsional shear testing, a

common group of testing devices sometimes considered "dynamic".

These devices, whether strain or stress controlled, generally work best

when measuring soil stiffness at strains between 10"1 and 10'3 percent.

Ni (1987) and Lee and Stokoe (1986) provide literature summaries of

11
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resonant column testing for the shear moduli and pulse testing for the

constrained and shear moduli, respectively. It is not the writer's intention

to repeat their work, but to stress the strengths and weaknesses of the

devices currently used in practice. Additional reviews of dynamic testing

for the laboratory and the field are provided by McSkimin (1961), Richart

(1975), and Woods (1978).

This chapter concludes with a brief summary of the relationship

between the stress state and the dynamic moduli of soils, as it is currently

understood by the soil dynamics community. This relationship is

presented in light of the development in the laboratory equipment.

2.2 Resonant Testing Devices

The first major group of dynamic laboratory testing devices

measure the resonant frequency of a specimen, from which the specimen

stiffness is computed using one-dimensional wave propagation theory.

These are commonly referred to as resonant column devices, and their

first recorded use was by Japanese engineers (lida, 1938 and lida, 1940)

when wave propagation in a sand column subjected to longitudinal and

torsional motion was studied. Their device determined wave velocity

from the resonant frequency and height of the sand column and had no

provisions to confine the sand other than under its own weight.

The growth of the nuclear power industry in the 1960's revived

interest in dynamic soil properties as they pertained to soil-structure
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interaction and liquifaction problems. Consequently, the resonant

column device reappeared as a tool to study dynamic soil properties.

Shannon, et al (1959) and Wilson and Dietrich (1960) designed a new

resonant column and data reduction scheme. In their device, the soil

specimen was placed on a vibrating base which could be excited

longitudinally or torsionally. Most importantly, an isotropic confining

pressure could be applied to the specimen.

A schematic of Shannon and Wilson's device is included in Fig.

2.1. Drnevich et al, formalized the resonant column device and data

reduction method in 1978. Their proposal was eventually designated a

standard (D4015-87) by the American Society for Testing and Materials.

Shannon and Wilson's device, also referred to by researchers as the

"Drnevich" device, measures the resonant frequency of the soil-device

system. The device response has to be determined separately in a

calibration test and is then removed from the system response to obtain

the soil response. Further, constraints have to be placed on the relative

stiffness of the springs attached to the driving base in order to reduce the

laboratory data using "free-free" or "fixed-free" one-dimensional wave

propagation theory. The process of determining a soil stiffness was

relatively complicated and required a computer program and/or the use

of several tables.

In the 1960's and through the mid-1 970's, researchers developed

and used resonant column devices for numerous investigations. These
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Fig. 2.1. Schematic of Early Resonant Column. (From Drnevich et al,
1978)
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researchers included Hall and Richart (1963), Hardin (1965), Afifi and

Richart (1973), and Anderson (1974). In the course of their

developments, the driving mechanism was moved to the top of the

specimen and the base was rigidly fixed, creating a "fixed-free" device

that was easier to use and which had a simpler data reduction process.

At the same time, the device became exclusively a torsional resonant

column, with research concentrating on determining the factors affecting

the shear modulus.

Early versions of the resonant column could only apply an

isotropic confining stress. Hardin and Music (1965) modified their device

so that it could apply a vertical stress (in addition to the hydrostatic

confining stress) to the top of the specimen through a piston bearing

directly on the vibration generator. Drnevich et al(1967) modified his

device to test hollow cylindrical specimens in order to minimize the

variation of shear strain across the specimens. Drnevich also increased

the torque capacity of his device so that shearing strains above 10-1

percent could be applied to the specimen.

In the late 1970's and early 1980's, a newer version of the

torsional resonant column was developed at the University of Texas at

Austin (Isenhower, 1979, Canales, 1980). The driving mechanism was

improved to simplify the test set up and to allow significant consolidation

in the sample during the course of a test. The torsional resonant column

device was further modified to accommodate solid or hollow specimens

(Isenhower, 1979). Allen and Stokoe (1982) modified the torsional
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resonant column to apply an anisotropic loading to solid samples

(1 > -2 = -3) by pulling down on a thin wire that ran through the center

of the specimen and was connected to the top cap. Stokoe and Ni

(1985) further modified the apparatus to test hollow specimens, which

allowed testing under true tnaxial conditions. In 1987, Ni connected the

resonant column testing devices at the University of Texas to a

microcomputer and all aspects of the test and data reduction were fully

automated. Figure 2.2 is a schematic of the anisotropic torsional

resonant column device set up with a hollow specimen that was used by

Ni (1987).

One of the important aspects of the development of resonant

column devices is that the majority are now constructed to measure only

one elastic moduli under one state of stress, specifically, the shear

modulus under isotropic confining pressures. A second poinL is that only

one-dimensional wave propagation theory is applied in the data

reduction. ft will be shown in Chapter 3 that this is appropriate for

torsional resonant column testing because the fundamental mode in the

three-dimensional problem is independent of frequency. However, that

is not the case for longitudinal motion. It will be shown that the

fundamental longitudinal mode is a function of frequency and one-

dimensional approximations quickly become inadequate as the

frequency increases. One final point, only torsional resonant column

devices have been modified to allow testing under anisotropic states of
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stress, specifically biaxial compression (6- > 6-2 = f3) and triaxial (6 >

6-2 = 63) states of stress. To the knowledge of this writer, no resonant

device has been constructed with the specific intent of measuring

Young's modulus under anisotropic states of stress.

2.3 Pulse Test Devices

In laboratory pulse tests, the time for an induced disturbance to

travel from its point of origin to a detecting sensor (or between two

detecting sensors) is measured. The distance travelled by the

disturbance, divided by the travel time corrected for any instrument

delays is the pulse velocity. The specimen stiffness is then calculated

from the velocity in accordance with wave propagation theory in an

elastic whole space. The disturbance can be generated by any number

of devices, i.e. mechanical, electro-mechani.;, or piezoelectric.

Typically, the detecting sensors are velocity (geophones) or acceleration

transducers which convert physical motion into electrical signals that can

be amplified and recorded.

Pulse tests can be used to measure two body wave velocities, the

dilatational and shear wave velocities. For both waves propagating

between source and receiver locations, the respective particle motion for

the dilatational wave will be parallel to the direction of wave propagation

whereas it is perpendicular for the shear wave. Consequently, it is
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possible to design a pulse generator intended to generate predominantly

one or the other of the two wave types and orient the receiver with the

corresponding direction of particle motion. This use of "polarized" waves

is the basis of all pulse testing.

The devices constructed for pulse testing are either right circular

cylinder or cubic in nature. Cubic devices have the advantage to vary the

three orthogonal stresses independently, whereas cylindrical devices

can only load specimens biaxially. Lawrence (1963) used piezoelectric

crystals or ceramics to generate and detect disturbances in a traditional

triaxial test cell. Schmertmann (1978) generated pulsed dilatational and

shear waves in cylindrical samples by striking a rod with a ball and

scissor-type mechanical generator within a test chamber. Roesler (1979)

buried a DC motor exciter in a 30 cm cubical sample in order to generate

shear waves. Knox, et al, (1982) constructed a large-scale triaxial device

(LSTD) at the University of Texas (UT) in which 7 ft cubical samples were

loaded in true triaxial states of stress. Accelerometers were buried at

different locations and elevations inside the sample. The LSTD was

used subsequently by Chu et al (1984) and Lee and Stokoe (1986) to

study: (1) the effect of stress state on dilatational and shear wave

velocities (and hence, constrained and shear moduli), (2) the influence of

structural anisotropy on dilatational and shear wave velocities, and (3)

the importance of (1) and (2) on in situ testing. These goals dictated the

use of such a large device versus the relatively small laboratory devices
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accelerometer

--- :" 0 f t 2 in.
=-I4

7 ft 2 in. 7 ft 2'1n.

Fig. 2.3. Cut-Away Isometric View of Large-Scale Triaxial Device

(LSTD). (From Lee and Stokoe, 1986)

used by earlier researchers. Figure 2.3 is an illustration of the LSTD

used at the University of Texas over the past decade.

Pulse testing in cubic devices has the advantage of measuring

dilatational and shear body waves under triaxial stress conditions with

relative ease. Through the use of "polarized" waves it is possible to

investigate the effects of structural anisotropy (in large samples) and

stress-induced anisotropy. However, pulse methods in cubical devices
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cannot measure the bar wave velocity (and Young's modulus) directly;

rather it has to be calculated from other moduli assuming isotropic linear

elastic properties in the specimen. Until recently, pulse methods have

not been used tc find the bar wave velocity in normal laboratory-sized

soil samples.

2.4 Other Developments in Dynamic Laboratory

Testing

One of the most significant developments over the past quarter of

a century is the routine use of piezoelectric crystals and ceramics for a

variety of applications. There are signs that such use is slowly making its

way into the realms of geotechnical laboratory testing. For years, ihe use

of piezoelectric technology in resonant column devices has been limited

to the accelerometers used to measure the motion of the drive plate

and/or the free end.

Piezoelectric technology can be applied in both resonant and

pulse devices currently used in dynamic laboratory testing. First, the

advent of piezoelectric vibration generators, made by stacking

piezoelectric ceramic disks and connecting them in series, has made it

possible to replace the cumbersome electromagnetic or electro-

mechanical vibration mechanisms used in resonant column devices.

The piezoelectric shaker has a greater frequency range than the current

driving mechanisms which are generally limited to less than 1000 Hertz.
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However, piezoelectric shakers also can not operate well at very low

frequencies (<300 Hz) and a trade off has to be considered.

Piezoelectric technology can also be applied in pulse tests,

particularly with the customization and miniturization allowed by the

technology. Strassburger (1982) and Dyvik and Madshus (1986) have

measured small-strain shear moduli using piezoelectric bender elements

embedded in soil samples to generate and detect shear waves.

Strachan (1985) proposed an alternative test method for ensuring full

saturation in triaxial test samples by measuring the dilatational wave

velocity generated and detected by piezoelectric crystals mounted in the

center of the base and top cap of the sample. Strachan demonstrated

that the well-known sensitivity of the dilatational wave velocity to small

quantities of air in the pore fluid can be correlated to the wave

propagation velocity and the B-value coefficient (change in pore

pressure over change in isotropic stress).

There is a second area of dynamic laboratory testing where

advances in technology are having an impact. That area involves the

control and recording of dynamic laboratory testing and its subsequent

data reduction. As mentioned earlier, Ni (1987) has fully automated the

torsional shear and resonant column test devices. It is the writers

observation that this is the state of the art, however, even now electronic

laboratory equipment is available that has many times more the

capability of the equipment assembled by Ni. Perhaps the most

significant development is the use of dynamic signal analyzers which
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allow, through the use of Fast Fourier Transforms (FFT), real time

analysis of laboratory measurements in the frequency domain. Just one

example is provided by Tawfiq, et al (1988) who used random noise to

conduct pulse testing of cohesive soils and then analyzed the response

in the frequency domain. It is the writer's opinion that frequency domain

analysis will become more common in dynamic laboratory testing in the

future.

2.5 Dynamic Properties of Soils Under Different States

of Stress

The study of the effects of stress state on dynamic material

properties was initiated by Duffy and Mindlin (1957), who derived a

longitudinal wave equation for a material composed of elastic, perfectly

rounded particles arranged in a face-centered cubic array. Their

equation, in terms of Young's modulus, E, is

E = 2(8 - v) [3G2 6-1

8-5vp L 2(1Vp)J (2.1)

where Vp and Gp are Poisson's ratio and shear modulus of the material

particles and 6- is the effective isotropic confining stress. Duffy and

Mindlin's experiments with steel spheres, arranged in the shape of a bar,

showed this cubic root relation between Young's modulus and confining
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stress was likely a lower bound, as they actually measured a higher root

for confining presures below 5 psi.

Hardin and Richart (1963) used a "Shannon-Wilson" free-free type

of resonant column device to evaluate both longitudinal and shear wave

velocities in granular material. They found that the shear modulus of

sand varied with approximately the square root of the isotropic confining

pressure. They also showed that the void ratio was one of the most

significant variables affecting shear modulus, with other factors such as

moisture content, grain characteristics, and gradation influencing the

modulus mainly by how they affect void ratios.

Hardin (1965) used a Kevin-Voight model to analyze the response

of a cylindrical column with different boundary conditions and concluded

that it would be suitable for representing the resonant column system.

He also concluded that damping measurements in the resonant column

were hysteretic in nature, i.e. independent of frequency.

Drnevich (1967) investigated the effect of strain history on the

dynamic properties of a dry Ottawa sand. One finding of his work was

that the low-amplitude (<0.001%) shear modulus of undisturbed sand

varied with the square root of confining pressure.

Hardin and Black (1966) published an extensive study of the effect

of isotropic confining pressure on the stiffness of sand. They also

concluded that shear modulus was proportional to the square root of the

confining pressure, and in 1968 extended those conclusions to include

normally consolidated clay. Hardin and Black concluded that the



25

functional relationship for shear modulus would include many factors, the

most likely being:

G =f( -0, e, H, Sr, o, Cg, Ap, f, t, OCR, T, O, KT) (2.2)

in which

jo = effective octahedral normal stress,

e = void ratio,

H = ambient stress and vibration history,

S - de9,ee of saturation,

To - octahedral shear stress,
C = grain characteristics, grain shape, grain size,

grading, and mineralogy,

A = amplitude of vibration,p

F = frequency of vibration,

T secondary effects that are a function of time,

0 = soil structure, and

KT  = tempetature, including freezirg.

Based on numerous tests on different soils, they suggested an

empirical equation for clay and clean sands when e < 2.972 (Hardin and

Black, 1968). This equation can be written as:
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Gra x =1230 F(e) OCR K 6-o 0.5 (2.3)

where

F(e) = (2.973- e)2/(l+e),

OCR = overconsolidation ratio, and

K - overconsolidation adjustment factor.

The value of K varies between 0 and 0.5, depending on the

plasticity index PI and equals zero for a PI equal to zero. The units for

both Gmax and 6- are psi. This equation is known as the "Hardin - Black"

equation.

This early work by Hardin and Black was enlarged by a series of

tests on clean sands and cohesive soils by Hardin and Drnevich (1972).

They identified strain amplitude, mean effective stress and void ratio as

the three most important factors affecting shear modulus. Degree of

saturation and overconsolidatior ratio were also important for cohesive

soils, but appeared less so for sands. It should be noted that their test

program, which utilized resonant column and cyclic torsional shear

devices, ,1tilizrd a frequency range between 1 and about 300 Hz, and

was conducted under isotropic states of stress.

Although the Hardin - Black equation can be applied to predict the

low-amplitude shear modulus for many types of soil, Hardin (1978)
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proposed a modification of this equation in an attempt to extend its range

to higher void ratios and to make the equation dimensionally correct.

That equation, referred to as the "Hardin" equation, is

Gmax = A (OCR)K Pa -n -on /F(e) (2.4)

where

A, n dimensionless coefficients (called stiffness

coefficients in this study),

Pa atmospheric pressure (in same units as Gmax

and 6o ),

F(e) 0.3 + 0.7e2.

For most practical applications, Hardin suggested the use of A = 625 and

n = 0.5.

Research in the 1970's concentrated on refining the laboratory

testing methods and improving the empirical relationships put forth by

Hardin and Black in the late 1960's. One of the most notable

developments was the discovery in the early 1980's of how stress state

impacts the magnitude of the shear modulus. In particular, it was

determined that shear wave velocity, and consequently the shear

modulus, was dependent on the effective stress in the plane containing

the direction of wave propagation and direction of particle motion and
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was nearly independent of the anti-plane stress (Roesler, 1979; Knox, et

al, 1982; Allen & Stokoe, 1982; and Lee, 1985). In 1986, Lee and

Stokoe published the results of a comprehensive set of seismic tests on

sand in a large scale triaxial device (LSTD) where the sand was

subjected to both isotropic and anisotropic stress conditions. They found

for waves propagating along principal stress directions:

Gmax C a nb nbc nc (2.5)

where

Gma x = shear modulus at small strains (<10-4

a = principal stress in the direction of wave

propagation,

6 -b principal stress in the direction of particle

motion, and

& = principal stress in the out-of-plane

direction (i.e. the third principal stress).

The factor C is simply a coefficient. Parameters na, nb, and nc are

stiffness coefficients. For practical purposes, nc = 0 and Eq. 2.5 can be

rewritten as

Gm x = C a na 'b nb (2.6)
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This approach for representing modulus has been referred to in the

literature as the "individual stress approach" or "three-stress approach" in

the case of Eq. 2.5 and the "two-stress approach" in the case of Eq. 2.6.

Lee (1985) performed extensive wave propagation tests on a dry

sand sample confined under isotropic, biaxial, and triaxial states of stress

in the cubical LSTD at UT. Shear wave velocities were measured along

all principal stress directions. Lee's results also showed that shear wave

velocities depend about equally on 6-a and 6b, with 6c having a

negligible effect. In his studies, Lee expressed shear modulus as

G = S0 nao nbpal -na-nb/F(e) (2.7)

where S, na, and nb are the stiffness coefficients and F(e) is defined as in

Eq. 2.4. Ni (1987) has tabulated the results obtained by other studies for

the stiffness parameters that define the small-strain shear modulus. His

summary is included in Table 2.1.

It is noted that the foregoing discussion has concentrated on the

stress-state affecting the shear modulus. It has illustrated how, for shear

waves propagating along principal stress directions, the principal

stresses in the plane containing the direction of wave propagation and

particle motion control the value of shear modulus. However, pulse tests

in the LSTD at UT conducted during the same period of time has lead to

an equally important discovery. It was found that for dilatational waves
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travelling along principal stress directions, the principal stress parallel to

the line of wave propagation and particle motion almost solely controls

the constrained modulus.

In pulse tests on small- and large-scale laboratory sized

specimens, Schmertmann (1978), Kopperman, et al (1982) and Chu, et

al, (1984), have shown the dilatational wave velocity is proportional to

the mean effective stress raised to a power between 0.14 and 0.24.

Tests by some researchers make a distinction between stiffness

coefficients for dilatational waves travelling in a vertical (anisotropic)

plane of the specimen versus waves propagating in the horizontal

(isotropic) plane of a structurally anisotropic specimen. The values are

typically different. Lee and Stokoe (1986) tabulated the results of other

studies for the dilatational velocity as defined by the mean effective

stress. Their table is recreated in Table 2.2.

An examination of Table 2.2 shows that if the constrained modulus

is derived from the dilatational wave velocity, it will typically vary as a

function of mean effective stress raised to a power between 0.34 and

0.48. It was shown by Kopperman et al (1982) and Chu et al (1984) that,

for waves travelling along principal stress directions, the constrained

modulus is controlled almost solely by th9 effective principal stress in the

direction of wave propagation (and particle motion). This distinction is

only important for specimens loaded anisotropically.
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Table 2.1. Summary of Stiffness Coefficients for Shear Modulus
Obtained from Various Research Studies. (From Ni, 1987)

Range of
Author Void Rjo F(e) S n ra ob ac Sum. psi Rcmaks

Hardin and 0.53 -063 - 0.46- 0.50 - 2.1- 13.9 Oawa rd. a* '
Richin (1963) 0.54 - 0.62 - 13.9 - 69.4

La '=no 0.56-1,48 1* 681(350)" 0.50-0.66 - 20-100 Kbolniatand
(1965) Bostn blue clay, b

Hardinand 0.64-0.65 0.50 2.1- 13.9 Oaawasand. a
Black (1966) 0.60 13.9- 69.4

Hardin and - 0.80 II 724(686) 0.50 Roaund Ottawa Wad.2
Drncch (19 )

Black (1%98) 1 625(321) 0.50 Angular crushed sand. a
0.77 - 0.88 1 230(425) to 0.50 27.8 - 55.6 Edgar plas clay, a

625(321)

Hardin and < 2.0 1 625(321) 0.50- Soils
1% saki.eta 0.61 -0.86 U 724(812) 0.40 2.8-83 Toyour sand. a

(1977)

Hrdin (1978) 0.4 -1.2 111 625 0.50 Soils, a

R ce~cr (1979) - 0.298 0.214 0.00 7.25 - 25 Fine rund grn sand, c

Kokusho(1980) 0.614 - 0.79 11 678(826) 0.50 13.9- 27.8 Toyoura sand, d

lirr .uJ 0 t17 - 070 111 720 0.48 0.24 0.22 4.0 - 640 Wahed hn.ar %and. a
. t,,kic 1!')N2)

I ,, . C1.11 0.40 124 0I is )112 l)-411 \.),.l n njt ,,
1:98:)

Yu and Ri.ht-n 052 -062 0.24 0.28 3- 28 4 Ottawa sand and
(193) Bral sand, a

ChLirr, r al 0 68 111 523 0.48 1 45 - 44 Monterey No 0 s.nd, j1984,

Hc:y iee, and 062 - 0.70 11 563(686) 0.50 - 14.5 . K7 Coar'.e-;.ratn snd. ,a

Stokoe. et 31 062-0.70 - 0.40 0.18 0.18 10-40 Washed morta snd. c4198_5)

Stokoe and Ni 0.69 I1N 721 0.44 0.22 0.22 3.0- 55.0 Washed mortar sand. a
(1985) M

Let and Ss oc 0.62 - 0.70 - 0.40 0.20 0.20 0.00 10-40 Washed mortar sand. c
(1965)

This rsearch 064 -0.72 111 687 0.44 0.22 0.23 002 2-55 Washed mortar sand, a
111 0.23 0.20 - 12-24 Ticino .and a
!11 0.24 0.23 - 12-24 Reid-Bedford sand, a

- F(e) I a (2.97- e) /(1"). Iia (2.17 - )2 /(1l). III a 0.3 +0.7 2

Number in the braket is the anginal value wbich is refurred to F) shown,. while the number not i te bracket is the
%a&Jut of S whch is referned to tie III of F(e).

. Remarks: a. *rsonant column ztu b a supersonic pulse test t a pulse test (cubic sample). d a cychc maxeal test



32

Table 2.2. Summary of Values of the Slope of the Log M - Log o

Relationship* for Dry Sand under Isotropic Confinement.
(After Lee and Stokoe, 1986)

Reference nm Confining Remark
Pressure

Matsukawa and 0.40 0.3 - 3.0 psi a
Hunter (1956)
Schmertmann 0.40 - 0.46 5 - 20 psi al
(1978) 0.28-0.36 5- 20 psi a2
Kopperman, et al 0.40 10 - 40 psi bl
(1982) 0.46-0.48 10 - 40 psi b2
Chu, et al 0.34 10 - 40 psi bl
(1984) 0.44-0.46 10 - 40 psi b2
Lee and Stokoe 0.42 15- 30 psi bl
(1986) 0.44 15 - 30 psi b2
* M = C onm
a. Pulse Test in Cylindrical Chamber
b. Pulse Test in Large-Scale Triaxial Device (LSTD)

1. M from Vp in vertical plane of sample, i.e. Vpa
2. M from Vp in horizontal plane of sanple, i.e. Vpi

At first perusal, very little can be found in geotechnical literature

specifically addressing the measurement of Young's modulus using

dynamic wave propagation. Actual published results are less common

today because of the recent emphasis on studying the shear modulus.

The writer has discovered what appears to be some confusion on the

part of recent researchers when reviewing past literature. What early

researchers mistakenly called the dilatational or compressive wave

velocity was, by the very nature of the test in which they were measured
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(in resonant column tests), the bar wave velocity. This has caused recent

reviewers to group what were tests measuring the bar wave velocity with

those which measured the dilatational velocity. The only way the writer

knows to measure the dilatational velocity is through the use of pulse

tests.

Reexamining the literature, and retabulating the results of various

researchers in light of this discovery, it can be seen in Table 2.3 that

Young's modulus (as determined from the square of the bar wave

velocity) is a function of the mean effective stress raised to a power which

typically ranges between 0.45 and 0.55 with some values as high as

0.70.

Only two recent references were found by the writer where

Young's modulus values were reported, and both of these involved

longitudinal resonant column tests. Heiniger and Struder (1985) built a

resonant column device to test coarse granular materials and reported

Young's and shear moduli values for gravel and Monterey 0 sand.

Unfortunately, their tests were done only at two confining pressures. The

writer does note that they measured multiple longitudinal and torsional

resonant frequencies but still used only the first resonant frequency to

compute the respective moduli. Saxena, et al, (1988) reported

longitudinal and torsional resonant tests on uncemented and partially

cemented Monterey 0 sand. Their relationship for Young's modulus of
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Table 2.3. Summary of Stiffness Coefficients for Log E - Log o

Relationship* for Soils under Isotropic Confinement from Past
Research Studies.

Reference nm Confining Remark
Pressure

Duffy and Mindlin 0.50 < 5 psi a
(1957) 0.34 > 5 psi
Shannon, et al 0.50 > 4 psi a
(1959)
Hardin 0.46 - 0.62 3 - 55 psi a
(1961)
Smoots and Stickel 0.32 - 0.56 > 4 psi a
(1962)
Wilson and Miller 0.40 - 0.50 > 4 psi a
(1962)
Hardin and Richart 0.54- 0.70 < 14 psi a
(1963) 0.46-0.50 > 14 psi

* E = C 4"0nm
a. Longitudinal Resonant Column Tests

the uncemented sand involved the mean effective stress raised to a

power of 0.39. It appears not much work is been done measuring the

Young's modulus of soil materials.
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2.6 Summary

Dynamic laboratory testing devices can be divided into two

general groups: those which use pulse methods, and those which use

resonant methods. The pulse devices measure stiffness by determining

the time for a polarized body wave (dilatational or shear) to travel through

the material between a dynamic source and receiver. The distance

divided by the corrected travel time yields the body wave velocity which

is then used to calculate stiffness. Pulse test devices are either

cylindrical or cubic in nature, allowing testing under biaxial (51 > 8"2 = 3

or a, = 52 > 053) or true triaxial (51 > 52 > 53) loadings, respectively.

However, they can only measure the constrained and shear moduli and

are not able to measure Young's modulus.

Resonant method devices measure stiffness by finding a

characteristic resonant frequency of the specimen. A wave velocity is

computed from the resonant frequency by applying one-dimensional

wave propagation theory. Typically, resonant devices only find the first

resonant frequency, either torsional or longitudinal, and no use is made

of the multiple resonant frequencies which are sometimes observed.

Torsional resonant devices can, with modification, apply biaxial

(compression only) and triaxial loadings to specimens. However, all

longitudinal resonant devices are used only under isotropic loading

because of the difficulty associated with making measurements under

biaxial or triaxial loadings. Although first introduced in the 1930's,
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resonant column devices have only been used extensively to study

dynamic soil properties since the 1960's. The bulk of those studies have

concentrated on the parameters affecting the shear modulus with the

implied assumption that the parameters would affect the other elastic

moduli in the same manner. In particular it was commonly accepted that

the shear modulus, and the other elastic moduli as well, were a function

of the mean effective stress raised to a power between 0.30 and 0.50.

This is true only for specimens under isotropic confinement.

Research over the past decade, in which pulse and resonant

devices were used to study soils under biaxial and triaxial loading

conditions have shown that the elastic moduli are affected differently by

the different principal stresses. That research, which was confined

primarily to dry sands, has shown that for waves propagating along

principal stress directions, the constrained modulus is controlled almost

solely by the principal stress in the direction of wave propagation and

particle motion. It was also found that the shear modulus is controlled

about equally by the principal stresses in the direction of wave

propagation and particle motion, and is virtually unaffected by the third

principal stress. No research studies have been found which described

how the state of stress influences Young's modulus.



Chapter Three

Theoretical Background

3.1 Introduction

Inherent in this research is the assumption of small strains, hence

the test materials are assumed to behave linearly elastically. There are

many well developed wave propagation problems that are founded in

linear elastic theory. Comprehensive discussions of many problems are

given by Rayleigh (1945) and Love (1944). Theoretical and

experimental developments for wave propagation in waveguides are

relatively more recent, dating to the mid-1900's. The advent of high

speed computing using numerical methods has broadened the capability

of the mechanics researcher to study more complex and arbitrary

problems. However, the theory applied in this research is founded in

fundamental solutions developed long before the computer.

This chapter, along with the detailed developments contained in

Appendices A, B and C, presents the theoretical foundation used for the

reduction of the measurements made in the laboratory. General

solutions of the equations of motion in cylindrical coordinates are

contained in Appendices A and B. A particular solution for one-

dimensional wave propagation in a finite rod is presented in this chapter

because of its specific application to the developed test. Similarly, the

37



38

three-dimensional solution for waves propagating in the axial direction of

an infinite bar is also presented in detail. Finally, a brief summary of the

theoretical solution for transient waves propagating in a semi-infinite rod

due to an impact on the end is included. A detailed development for the

transient case is included in Appendix C.

3.2 One-Dimensional Wave Propagation in an Elastic

Material

If the body forces and the stress tensor depend only on one spatial

variable the stress equations of motion, expressed in indicial notation,

become

1:il , + Af = Pul' (3.1)

where rij is the stress tensor, p is the mass density, fi is the vector

describing the external forces, and Ui is the vector describing the

acceleration. The displacement equations of motion become

.Ui, + (.g.+)uji + Pfi = Pui (3.2)

where ui is the vector describing the displacements and g, and X are

material constants. These equations, here expressed in Cartesian

coordinates (xl, X2 and X3), can also be expressed in cylindrical
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z

r

Fig. 3.1. Cylindrical Coordinates for Finite Rod.

coordinates (r, e, and z) as illustrated in Figure 3.1. The strain-

displacement and stress-strain relationships expressed in cylindrical

coordinates are given in Appendix A.2 and the displacement equations

of motion are given in Appendix B. In cylindrical coordinates, z, with its

corresponding displacement, w, will be chosen as the dependent spatial

variable for the purposes of the following discussion.

Now consider the case where w is the one non-vanishing
Iv su

displacement, which assumes u, v, a- and a- equal zero. Asa result

Eqs. A.18-A.24 reduce to
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aw aw
tz = (X+2)-" , r = To = Xz (3.3a,b)

and the only displacement equation of motion that is not trivial is

a2w 1 a aw 1 a2w
+ 1v= Cr2 t2 , (3.4)

where v is the Poisson's ratio and CT is the shear wave velocity.

Rearranging Eq. 3.4 yields the familiar equation for a one-dimensional

dilatational wave travelling in a half-space

a2w ja2w(X.2g)-- (3.5)

or
a2w 1 a2w (3.6)
Z2CL2 

It2

CL is referred to alternatively as the compressional, dilatational, P-wave,

or constrained wave velocity and is also represented using the symbol,

Vp. The constrained modulus, M, is defined as

M = .+2g = PCL2 = pVp 2  (3.7)

Now consider a second case where cz is the one non-vanishing

stress, which assumes Tr ='to = Erz = Tre = 'ez = 0. Then Eqs. A.14 through

A.24 yield
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r = EO - z -VPEz (3.8)

where v is the Poisson's ratio. Substituting Eqs. 3.8, A.14 and A.24 into

Eq. A.20 yields

tz= (U4.)Ez (3.9)

If the expression for tz in its displacement form is substituted into Eq. 3.1

in the absence of external forces, it yields the well known equation of

motion for a plane wave travelling along a rod in the absence of external

forces, thus

i(3X+21.i) a2 w 2w

(X+A) Dz2 = 2 (3.10)

or
a2w I 2w
aZ CB2 C2 (3.11)

CB is referred to as the bar or rod wave velocity and is also often

represented by the symbol, Vc. The Young's modulus, E, is defined as

E = p(3X+2t) = pCB2 = pVC2  (3.12)

E=im m



42

Now consider one final case, that where the displacement is

confined to the plane normal to the z-axis, which is equivalent to

assuming w and any derivatives with respect to r and 0 are equal to zero.

Then the only stresses that are non-zero are given by

rz0 N-z=  -. (3.13a,b)

and the displacement equations of motion then reduce to the two

uncoupled equations given by

D2u 1 a2 U a2v 1 a2voDZ2 - CT2 at2 ' oZ 2 = CT2 c-2(34ab

CT is referred to as the shear, distortional or S-wave velocity and is also

often represented by the symbol, Vs. The shear modulus is defined as

G = I = PCT 2 =pVS2  (3.15)

The deformational behavior of an isotropic, linear elastic material

can be defined by any two of the elastic constants, or any two of the

velocities Vs, Vc or Vp. Table 3.1 lists some of the more commonly used

relationships.
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Table 3.1. Commonly Used Relationships Between Elastic Constants.

E,v E, .

_._Ev ,u(E-2,y) 2
(I +v) (I - 2v) 3,u-E

E
,u 2(1 +v)

£ £ £,u(32+2 1 u)E E E 3A2i
A+Pu

B E pE 2
B ~3(1 -2v) 3 (31A -E)

E-2y_
2yz 2().+p)

X = Lame's constant

= Shear modulus

E = Young's modulus

B = Bulk modulus

v = Poisson's ratio
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3.3 One-Dimensional Wave Propagation in a Rod

Subjected to a Steady-State End Condition and

with an Added Mass

The development of the closed form solution for one-dimensional

motion in a finite rod is well known. See, for example, Richart et al

(1970) and more recently, Norman-Gregory and Selig (1989). As

defined in the previous section, one-dimensional motion assumes the

wave propagates with a plane front without dispersion and is dependent

only on the axial spatial variable and time. The governing equation of

motion is given by Eq. 3.11. The axial displacement, w(z,t) can be

assumed to take the following steady-state form:

w(z,t) = Cei(kz'wt) + De'i(kz+{°t) (3.16)

where k is the wave number and equals 0/CB, and C, D, are constants to

be determined from the boundary conditions.

The boundary conditions considered for this solution are those

anticipated to best represent the conditions in the test apparatus. In the

test apparatus developed in this research, the rigid base is subjected to a

steady-state sinusoidal vibration and the top is capped by a rigid mass.

The conceptual problem is illustrated in Fig. 3.2.
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Rigid End Mass

T=-i

Equation of Motion:

L d -~zt 1 wzt

Base Motiontw(O,t) = We'

Fig. 3.2. Idealized Model for One-Dimensional Wave Motion in a
Finite Rod.
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The boundary conditions are;

at z = 0, w(0,t) = Woe-iwt

(3.17a)

dw(L,t) d2w(L,t)
at z= L, EA dz = dt2  (3.17b)

Substituting Eq. 3.16 into the first boundary condition at z - 0 yields

C + D = Wo (3.18)

Differentiating (3.16) with respect to z and t yields

dt= - L2[Cei(kz-ct) + De-i(kz+cot)] (3.19)dt2

and

dw(zt) = ik[Cei(kz-wt) - De-i(kz+Wt) (3.20)
dz I

Substituting Eqs. 3.19 and 3.20 into the second boundary condition at z -

L yields

ikEA[Cei(kL-cot) - De-i(kL+ot)] =

-mo2[Cei(kL-&t) + De-i(kL+wt)] (3.21)
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Collecting coefficients and eliminating e-i(Ot, two equations for C and D

are determined. Cast in matrix form, these equations are

1 1 ]n Mo[(m 1 1iEA1k ]IC1} J 0  (3.22)

(MC0 2-ikEA)eikL (m(o2+ikEA)e -ikL tD2 1 f

Equations 3.22 can be solved for C and D which gives the solution for

w(z,t). The denominator of the solution is the determinant of the

coefficients. If the determinant vanishes, w(z,t) goes to infinity, a

condition analogous to "resonance." If the determinant is set equal to

zero, it yields the following equation,

(mo)2+ikEA)eikL - (m(o2 -ikEA)e -ikL = 0 (3.23)

Collecting real and imaginary terms yields

-mo2(eikLe-ikL) + ikEA(eikL+e-ikL) = 0 (3.24)

and noting Euler's identities

2i sinkL = (eikLeikL), (3.25a)

2 coskL = (eikL+e-ikL), (3.25b)
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Eq. 3.24 reduces to

ikEA(2coskL) = mo9(2i sinkL) (3.26)

Cancelling i, multiplying by L and recalling the relations k = G/CB, E =

PCB2 and p = y/g, yields with development

L *"o L oL
Lmo02is (--L = opCbALcos- (3.27)

. oL

c-L A* (3.28)
CB coL mg

Wtan = - (3.29)

where

M = mass of the sample,

m = added mass,

Ws= weight of the sample,

Wm = weight of the added mass, and
woL

Equation 3.29 is the same result obtained for one-dimensional

wave propagation in a finite rod where one end is fixed, w(O,t) = 0, and
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the other end has an added mass. Richart et al (1970) developed this

solution for one-dimensional torsional motion. Similarly, Norman-

Gregory and Selig (1989) recently rederved this equation for one-

dimensional longitudinal motion with a fixed end and added mass at the

other end.

Equation 3.29 is a transcendental equation with an infinite number

of roots for any given ratio of sample and added mass. This is illustrated

in Fig. 3.3, where values for 13 are given for M/m = 2.0. It is therefore

possible to compute the frequency for any givoIn weight ratio, sample

length and bar velocity. These frequencies correspond to the resonant

frequencies of the system. Thus it can be shown that

OnCB
COn = L , n=1,2,3... (3.30)

where 3n are the solutions to Eq. 3.29 for a given mass ratio and n

corresponds to the distribution of strain or displacement in the rod.

These distributions are also referred to as modes of vibration, i.e. n = 1 is

the first mode, r, = 2 the second mode, etc. These values of n refer to the

distribution of longitudinal displacements with respect to z, which

assumes a plane wave front, or that the longitudinal displacement is

equal in the plane perpendicular to the axis of the rod at any particular

point.
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It is relatively simple to solve in a similar manner the

corresponding case of one-dimensional motion for a rod with one end

fixed, w(O,t) = 0, and the other end free, dw(L,t)/dz = 0. This has been

done by Richart et al (1970) and others. The relative shapes of the first

three modes are illustrated in Fig. 3.4. It can easily be concluded that the

corresponding wave lengths for each mode, An, are given by

4Ll L = (2n-1) n=1,2, 3,... (3.31)

n = 2n1 I iI lnieBa
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Fig. 3.4. Distribution of Axial Displacements for the First Three
Modal Shapes of a Fixed-Free Rod. (From Richart et al,

1970)

The resonant frequencies of each mode for the fixed-free case also

follow directly from the solution. These are

(2n-1)CB
on 2L n=1,2,3.... (3.32)

The presence of a mass at the free end serves to reduce the

resonant frequency or alternatively, increase the modal wavelengths.
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This is easily seen in Fig. 3.3 where, as the mass ratio increases to

infinity, the values of On approach (2n-1)r/2, and the natural frequencies

approach those for the fixed-free case (zero mass at the free end).

3.4 Frequency Spectrum of a Solid Cylindrical Rod of

Infinite Length

The general solution for time-harmonic motion in an infinite

cylindrical rod with solid cross section is developed in Appendix B. The

frequency spectrum of an infinite rod is frequently considered for three

separate types of motions; torsional, longitudinal, and flexural. The

assumptions associated with each of these types of waves greatly

simplifies the frequency equation derived for the general case. In the

general problem, every choice of integer n and real valued wave number

k yields an infinite number of roots corresponding to an ifinite number of

modes of wave propagation in the rod. The general problem is further

complicated when imaginary and complex-valued wave numbers are

considered. The simplest case of torsional waves is described here first

in order to lay the ground work for the more complicated case of

longitudinal waves. Flexural waves will not be discussed as they were

not the focus of this study. However, any text on motions in waveguides

includes an analogous discussion of flexural modes.
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3.4.1 Torsional Waves in a Solid Cylindrical Rod

Torsional waves assume that only the circumferential

displacement is non-zero and that it is independent of e. Stated

differently, it assumes that the displacements in the axial and radial

directions and any derivatives with respect to the circumferential direction

equal zero. The only displacement equation of motion which applies is

Eq. B.25, the others being trivial. Reducing Eq. B.25 using Eq. B.27

yields

a2v l aV V N 1 a2v
r2 + r -r" 2 + F = CTt2 2 (3.33)

Similarly, the only non-trivial boundary condition is

avV
at r =a, r v = v.- r = 0 (3.34)

If the displacement v is of the form

v(rzt) = 1 B2J1 (qr)ei (kZ-O) (3.35)

where J1 (qr) is a Bessel function oi the first kind and order one and B2 is

a constant. When Eq. 3.35 is substituted into Eq. 3.34, it yields the

frequency equation for r = a in the form
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(qa)Jo(qa) - 2J1 (qa) = 0 (3.36)

Jo(qa) is a Bessel function of the first kind and order zero and q is defined

by

O2

2 -T-2 ._ k2  (3.37)

This is a transcendental equation whose roots have been tabulated by

Abramowitz and Stegun (1964), or they can be computed numerically.

Rewriting Eq. 3.37 to allow examination yields

°6T = (qna) 2 + (ka) 2  (3.38)

where

a = radius of rod,

0 = circular frequency,

k = wave number,

CT = distortional wave velocity, and

qn = roots to Eq. 3.37.
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Recalling that co = kC, where C is the phase (or apparent) velocity, Eq.

3.38 can also be written as

C I+ q,,al 1 (3.39)

A special solution to Eq. 3.36 is when q , 0. In this case, Eq. 3.39 shows

that C = CT, or the phase velocity equals the distortional wave velocity

and does not change with frequency. This means that the lowest

torsional mode is not dispersive. Further, if one takes the limit as q -* 0

in Eq. 3.35, it assumes the form

1
v(r,z,t) = B2rei(kz-( t) (3.40)

which shows that the displacement is proportional to the radius for the

lowest torsional mode.

An examination of the higher modes can now be made. In

general, one mode of propagation corresponds to each root of Eq. 3.36.

The solution to Eq. 3.38 is plotted in Fig. 3.5 for the first four modes

corresponding to qoa = 0, qla = 5.136, q2a = 8.417, and q3a = 11.62. It is

noted that ka can be real or imaginary for real values of qna. Thus, the

mode branches are hyperbolic for real values and circular for imaginary

values of k. The implication of this graph in practice is that, below a

certain frequency known as the cutoff frequency, a torsional mode will
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Fig. 3.5. Frequency Spectrum for Torsional Waves in a Cylindrical

Rod.

not propagate along a given rod of known radius and stiffness. Even if

the initial excitation at the rod end contains higher frequencies, the

higher modes will be evanescent and decay quickly.
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3.4.2 Longitudinal Waves in a Solid Cylindrical Rod

Waves travelling longitudinally, i.e. parallel to the axis of the rod,

are assumed to be axially symmetric, and contain displacements in the

axial and radial dimensions only. Axisymmetry assumes that the

circumferential displacement, and any derivatives with respect to it, equal

zero. Thus, the displacement equations of motion follow from Eqs. B.24

and B.26 as.

U 1 A 1 a2u (3.41)2u+ 1-2v Dr -CT 2 j 2 (.1

and
V2w 1 a2w (

1-2v az - CT 2 -2 (3.42)

The Laplacian in radially symmetric coordinates is

a2  1 a a2
V2 = _- (3.43)

and the dilatation is

A = U. + Ow (3.44)

It is possible, with extensive calculation, to manipulate and solve these

equations for the displacements. However, it is simpler to cast the
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problem in terms of displacement potentials. The pertinent definitions

follow from Eqs. B.17, B.18 and B.19, which reduce to the following for

the axisymmetric case;

U =r - (3.45)

r -

vr =Vz (3.46)

a(p I a(Wor)
Sar (3.47)

where cp is a scalar potential and Ne, Vr and 'Vz are the three components

of, v', the vector potential. Noting Eqs. B.39 to B.42, it is convenient to

use potentials of the following form

(p= AJo(pr)ei(kz-0) (3.48)

We = CJI(qr)ei(kz ' ") (3.49)

and substituting these into Eqs. 3.45 and 3.47, yields for the

displacements

u = {-pAJI(pr) - ikCJI(qr)) el(kZ-cot) (3.50)
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w = {ikAJO(pr) + qCJo(qr)} ei(kz -wt) (3.51)

Here p and q are as defined by Eqs. B.34 and B.36, respectively. The

two non-trivial boundary conditions which follow from Eqs. B.31 a,b and c

are

at r=a, r =(X+ 2 -arU +au+ - =0 (3.52)

a~u a Wat r =a, Trz = 1j+ = 0 (3.53)

If one writes (X+2p.) and X in terms of p2 and q2 by manipulating

Eqs. B.34 and B.36, and then substitutes Eqs. 3.50 and 3.51 into Eqs.

3.52 and 3.53, two homogeneous equations in terms of the constant

coefficients A and C are obtained. These are, in matrix form,

(2k oq)+i
( (q2..k2)Jo(pa)+?Ji (pa)) (-k Jik+ J~ a) A

-2ikpJ 1 (pa) (q2-k2)J1(qa) J
= 0 (3.54)

The requirement that the determinant of the coefficients must vanish

yields the frequency equation for the longitudinal modes as

2-P (q2+k2)J 1(pa)JI (qa) - (q2-k2)2Jo(pa)Jj(qa)
a
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- 4k 2pqJI(pa)Jo(qa) = 0 (3.55)

This equation is known as the Pochhammer-Chree frequency equation,

and was first published by Pochhammer (1876). The five variables in Eq.

3.55, co, k, a, C, and CT can be reduced to three independent

dimensionless variables; the dimensionless velocity, C/CT, the

dimensionless wave number ka, and Poisson's ratio, v.

If Eq. 3.55 is multiplied by a4 and divided by J, (pa) and J1 (qa), it

can be recast in the form

2pa[(qa)2+(ka)2] - [(qa)2-(ka)2]2J (p a)
L\' \ / J J(pa)

- 4(ka)2(pa)(qa) = 0 (3.56)

Here it is convenient to redefine pa and qa by noting that o = kc and k =

27r/X. Thus,

and

(qa)2 = (2 Pn'2srto (3.58)

where a and y are defined by Poisson's ratio, v, as
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= (1+v)(1-2v) (3.59)

and
an = =FB 2('+v) ()

It is now possible to solve the frequency equation numerically, by first

assuming a = I, and choosing a value for v. Then by iterating C/CB for a

given value of 2a/X, it is possible to find values of C/CB which satisfy the

frequency equation. This has been done for the first three modes which

are illustrated in Fig. 3.6 for Poisson's ratios of 0.30 and 0.49.

This iterative solution technique assumes real values for 2a/X. It is

also conceivable that either one or both of the values for (pa)2 and (qa)2

could be negative, making them purely imaginary. if this occurs, the

corresponding Bessel functions in Eq. 3.56 are replaced with modified

Bessel functions.

The vertical axis in Fig. 3.6 is the ratio of the phase velocity to the

bar velocity, C/CB, known as the dimensionless velocity. The horizontal

axis is the dimensionless wave number ka/n. The dimensionless wave

number can be written in several different forms, such as:

ka =a 2fa 2a
W M (3.61)

X XI
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Fig. 3.6. Frequency Spectrum for Longitudinal Waves in a

Cylindrical Rod as a Function of Dimensionless Wave

Number.
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An examination of the lowest longitudinal mode in Fig. 3.6 shows

that, as the dimensionless wave number goes to zero, the phase velocity

approaches the value of the theoretical bar velocity. Stated in other

terms, as the wavelength becomes long with respect to the diameter of

the rod, 2a/ -+0, the apparent phase velocity approaches the theoretical

bar velocity. Conversely, as the wave length becomes short with respect

to the diameter of the rod, 2a/k--., the phase velocity approaches the

Rayleigh wave velocity. Recall that the Rayleigh wave is a surface wave

that has a velocity that is on the order of 85-95 percent of the shear wave

velocity and whose amplitude decays exponentially with depth from the

surface, becoming insignificant at depths greater than about one

wavelength below the surface.

The higher longitudinal modes in Fig. 3.6 become asymptotic to

the vertical axis as the dimensionless wave number approaches zero,

whereas they become asymptotic to the shear wave velocity as the

dimensionless wave number becomes infinite. The three modes have

been replotted in Fig. 3.7 as iL ictions of frequency by rewriting the

frequency equation in terms of ca/7CB. It can be seen there are specific

frequencies at which the dimensionless velocity goes to infinity. Theae

frequencies are known as the cutoff frequencies and are easily

determined.



64

1.8

1 6 - - .....I .......... .... .......... ..................

.0 05 ............... 1....0 15....... 2.... .0..

coa /C
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As k--0, Eqs. 3.56, 3.57 and 3.58 become respectively

2p'a(q'a) 2 - [(q'a)2]2J(p'a) = 0 (3.62)

(p'a) 2 = (tocoa )  (3.63)

(q'a)2 =(C3coa (3.64)

Substituting Eqs. 3.63 and 3.64 into Eq. 3.62 gives

2 2 (P'a)j(p'a) = 0 (3.65)

and values of p'a which satisfy this transcendental equation yield the

cutoff frequencies

c oa= (p'a)a (3.66)
ntCB 7
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3.5 Transient Wave Propagation in a Semi-Infinite

Solid Cylindrical Rod

The simplest solution for transient wavcs in a rod assumes a one-

dimensional state of stress and the applicable equation of motion,

derived in Section 3.2 was

a2w 1 a2w
DZ -- CB2 0-2 (3.67)

where w is the displacement parallel to the longitudinal axis of the rod

and CB is the theoretical bar velocity defined by (3.12). This wave

equation predicts that a pulse will not change shape as it propagates

along a rod, however researchers have shown, (Bancroft, 1941, Hudson,

1943 and Davies, 1948), that this is typically not the case. If the pulse is

applied rapidly the resulting wave form shows dispersion as it travels

along the rod.

The problem considered in this section is illustrated in Fig. 3.8.

General methods of solution have been investigated by researchers such

as Rosenfeld and Miklowitz (1965) and others. A solution for the

axisymmetric case can be obtained using integral transform methods if

mixed boundary conditions are specified at z = 0. Such a solution was

presented by Folk et al (1958) and is reproduced in the manner of

Achenbach(1973) in Appendix C.
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Fig. 3.8. Pr-:tOm Statement for Transient Wave Propagation in a
Senii-lnfinite Cylindrical Rod.

The solution presented in Appendix C solves for the particle

velocity in the axial direction in the vicinity of the elementary wave front

that is travelling at the theoretical bar velocity. That solution is of the form-

wV(z,t) = P~ [F1 + F2] (3.68)
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where F1 and F2 are given by

= 1 ((3.69)

and where

q Z-CBt Z+CBt (3.70a,b)
- (3 t) 113  , 2 - (3t) 1a/3

and

= "v2CBa2 (3.71)

In this form F1 and F2 can be recognized as integrals of Airy's integral

00

Ai(qn) = -cos(qnTv+-)dl (2 72)

0

Thus we can rewrite the expressions for F1 and F2 as

q,

F1 = JAi(s)ds + (3.73)0
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q2

F2 = Ai(s)ds + (3.74)

0

where the 1/6 terms enter as the values for F1 and F2 for q1 = 0 and

q2 = 0, respectively.

The solution for Eq. 3.68 was determined numerically and plotted

in Fig. 3.9 as a function of q1. The two solutions shown in Fig. 3.9 are for

a rod with a bar wave velocity of 1000 fps, a length of 0.96 ft, a diameter

of 0.24 ft and Poisson's ratios of 0.25 and 0.49, respectively. The

elementary solution is shown as a solid line in the figure. The integrals in

Eqs. 3.73 and 3.74 approach -2/3 for large values of time, t, and the

solution agrees with the elementary solution, V = P/pCB. Alternatively,

for small values of time, the integrals vanish, thus showing that at some

distance ahead of and behind the wave front, z = CBt, the approximation

agrees with elementary theory.

It is important to remember that this approximate solution for

transient waves in a cylindrical rod is appropriate at some distance from

the end of impact. The evanescent waves produced by the nature of the

applied force, an instantaneous step function, may still exist at points

close to the end of the rod. The point at which it is safe to use this

approximation is a subject of detailed study and not a part of this

dissertation. However, it is assumed the solution will at least provide
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Fig. 3.9. Particle Velocity in the Vicinity of the Elementary Wave
front Travelling in a Semi-Infinite Rod Due to a Sudden
Impact at the End.

some insight into the behavior of the transient waves in rods with large

enough length-to-diameter ratios. In Fig. 3.9, the solution appears to be

appropriate for length-to-diameter ratios of at least four.
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This approximate solution for transient waves in a rod due to an

impact at one end has significant implications for this research. As will

be shown in Chapter 6, the fact that theory suggests some energy

precedes the arrival of the elementary wave front (travelling at the bar

wave velocity) establishes a premise for identifying the first arrivals at a

point as those corresponding to a wave travelling at the dilatational

velocity.

3.6 Summary

The theoretical solution for one-dimensional wave propagation in

a finite cylindrical rod is well known. An examination of a particular case,

where one end is subjected to a steady-state longitudinal vibration and

the other is capped by a rigid mass, shows that resonant frequencies

occur at relative phase angles of approximately plus and minus 90

degrees. It was shown that at resonance, the solution for this case is

identical to that for a fixed-free rod with an added mass at the free end.

The solution relates known sample and added masses to the natural

frequencies, sample length and bar wave velocity. Consequently, the

bar wave velocity can be computed using one-dimensional theory if the

natural frequencies of the specimen can be determined.

Research has shown that the phase velocity, C, for longitudinal

waves in a long cylindrical bar are frequency dependent and are typically

less than the theoretical bar wave velocity, CB. The three-dimensional
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solution for the longitudinal waves travelling in a cylindrical rod applies

the assumption of axisymmetry to the general problem statement. The

derived frequency equation relates three dimensionless variables: the

dimensionless velocity ratio, C/CB, the dimensionless wave number,

ka/c, and Poisson's ratio. The fundamental mode of this equation shows

that for small wave numbers, i.e. long wavelengths with respect to the bar

radius, the phase velocity approaches the bar wave velocity. Further, as

the wave number becomes very large, i.e. short wavelengths with respect

to the bar radius, the phase velocity approaches the value of the

Rayleigh wave velocity. Therefore, if the wave number, the phase

velocity, and Poisson's ratio are known, it is possible to calculate the

theoretical bar wave velocity.

An approximate solution for transient longitudinal waves in a semi-

infinite bar, due to a sudden impact on the free end, shows that some

wave motion will precede the square wave front which propagates at the

bar wave velocity. The solution suggests that some energy may travel at

a velocity that approaches that of the dilatational wave velocity.

This brief overview of each of these theoretical solutions is

supplemented by detailed developments in Appendices A, B, and C. The

particular case for one-dimensional wave propagation in a finite rod,

three-dimensional wave propagation in a long cylindrical rod, and

transient longitudinal motion in a semi-infinite rod are of specific interest

because they provide the basis for the development of the test apparatus

and data reduction methods used in this research.



Chapter Four

Modelling a Finite Rod Using Axisymmetric Finite Elements

4.1 Introduction

A computer program was developed using axisymmetric finite

elements to model the response at the top of a finite, isotropic, linearly

elastic rod subjected to a steady-state vertical motion at the base. The

program was developed to study the impact of various parameters on

the response of model test specimens. These parameters include, but

are not limited to, specimen stiffness, length, diameter, Poisson's ratio,

damping and theoretical end conditions. The program was developed

for use on a microcomputer and, in its present form, is limited to

solutions of the response at nodes along the top surface of the

specimen.

The program outputs a transfer function which relates the motion

of points on the top surface to that of the bottom surface as a function of

frequency. With this transfer function it is also possible, through the use

of Fourier transforms, to predict the time-displacement motion of the top

of the model specimen in response to a specified time-displacement

motion at the base. Such a program was developed to study briefly the

first wave arrivals for several transient input motions.

73
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Three model soils were defined for the study. The first typifies a

moderately stiff clay with high material damping, the second typifies a

loose sand under low confining pressure with moderate material

damping, and the third typifies a dense sand under moderate confining

pressure with low material damping. The following sections describe

the development of the finite element program and observations

concerning changes in the frequency spectrum of the model specimen

caused by varying different specimen parameters and boundary

conditions.

4.2 Development of the Finite Element Program

4.2.1 Developing the Axisymmetric Finite Element

The key to the success of the finite element modelling was the

use of axisymmetric elements. This allowed modelling a three-

dimensional problem as a two-dimensional problem, greatly reducing

the computer processing requirements. A complete description of the

development of the axisymmetric elements used in this program is

contained in Appendix D. A condensation of Appendix D is included in

this section for the benefit of the reader.

The equations for the strain displacement (u,v,w), and stress-

strain relationships expressed in cylindrical coordinates (r,O,z) were
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developed and are presented in Appendix A. These relationships can

be derived for the axisymmetric case by setting v and any derivatives

with respect to 0 equal to zero. The strain-displacement equations then

become

au u wr = , -(4.1a,b,c)

and

au a-w(4 2
rz = 2rz = -+ ar (4.2)

The stress-strain relationships are derived from Eqs. A.18-A.24, and are

given in matrix notation by

T;= D (4.3)

where t; and e are column matrices containing the pertinent stresses

and strains, respectively, and D is the matrix containing the stiffness

parameters that relate them.

Defining a two-dimensional 4-node, linear, finite element as

shown in Fig. 4.1, where the z-axis corresponds to the central axis of
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Fig. 4.1. Axisymmetric Finite Element in Global Cylindrical

Coordinates.

the cylindrical specimen and the r-axis is perpendicular to it, and if u is

the displacement in the r-direction and w is the displacement in the z

direction, then

u = fnUn and w = fnwn (4.4a,b)

where fn are prescribed interpolation functions and Un and wn are the

respective nodal displacements. In matrix notation

u NTU (4.5)
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where NT is the matrix of interpolation functions, fn, and U is a column

matrix of the nodal displacements, Un and wn. It is possible to write the

strain-displacement relationships given in Eqs. 4.1 and 4.2 using the

interpolation functions and their partial derivatives with respect to r and

Z, 1'nr and f'nz. respectively. These are then

1
Er = f'nrUn, 1=-fnUn, Ez = f'nzwn, and

Yrz f nzUn + f'nrwn. (4.6)

These can be written in matrix notation as

= B U (4.7)

where B is the matrix containing the interpolation functions and their

derivatives. To form the element stiffness matrix it is first noted that

,= D e = D B U (4.8)

and

T= UT BT. (4.9)

If the equations of motions for this element are stated in matrix form they

would be
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M U+ KU = P (4.10)

where

M = element mass matrix,

K = element stiffness matrix,

U = nodal displacement matrix,

U = nodal acceleration matrix, and

P = external forcing functions.

By assuming steady-state motions, and by the virtue of the conservation

of work and the definition of internal work, it is possible to show that the

element stiffness matrix is given by

K=JBTD B dV (4.11)

Written in global cylindrical coordinates K is given by

27 Z2 r2
K=J BT D B rdrdzde. (4.12)

zj r

It can be shown similarly that the element mass matrix is given in global

coordinates as
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21c Z2 r2
M- J f- p N NT r drdzdO (4.13)

zi ri

where p is the mass density of the element. The resulting element

matrices are 8x8, which corresponds to four nodes multiplied by the two

degrees of freedom at each node.

4.2.2 Constructing the Specimen Stiffness Matrix

The finite element model is constructed in layers of elements as

is illustrated in Fig. 4.2. Only half of the cylinder needs to be discretized

because of the axisymmetry of the problem. Each layer is composed of

1 to 20 elements, and the layer stiffness and mass matrices are

constructed using the individual element stiffness and mass matrices

developed in the previous section. The arrangement of elements in a

layer is illustrated in Fig. 4.3. There can be a maximum of 42 nodes in

a layer, and with two degrees of freedom at each node, the resulting

layer stiffness and mass matrices have a maximum size of 84x84. The

number of layers and number of elements are specified initially. All

layers have the same height, dz, and the same number of elements in

the radial direction.

The solver for the finite eimment model takes advantage of the

fact that the combined stitiness matrix for all layers will contain only
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non-zero values that are confined to a band not greater than 168 (2x84)

values on each side of the diagonal. If we call S the dynamic stiffness

matrix for a layer and partition it as

S =[11 S12] (414)
S21 S 2 2

where the subscript 1 refers to the degrees of freedom at the bottom

face of a layer and the subscript 2 to those of the top face, the equations

of motion are of the form

S11 S12 U1  PS21 $22+$11 S12 U2 P2
[~;ls2~~ll 12  i tr,+l{F~~l} (4.15)

S21 S22+S11 S12
S 2 1  S22 U n+1 P+1

If all the layers have the same properties. then the matrix S needs only

be formed once. The solution is then Ltained by initially letting

S'11=Si ,

P1 
= P1 ,

S' 2 2 - S22 - S21 (S'11)1S 12 , and

P' 2 = P2 - S2 1 (S'11)'P'1

Then repeating n times,

S'l1 -$11 + S'22
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P'1 = P'2

S'22 = S22 - S21(S'l1)-1S12, and

P'2 =- S21 (S'l 1 Pi1.

Finally, the desired displacements at the top are given by

U = (S' 22)1 P'2 . (4.16)

4.2.3 Specified Boundary and End Conditions

The boundary and optional end conditions are illustrated in Fig.

4.4. The radial displacement is fixed on the centerline due to the

axisymmetric assumption, but the axial displacement is not. The radial

and axial displacements are free on the outer surface of the rod, except

as prescribed at the ends. Also, it is assumed that the outer surface

remains free of external stresses.

The program has more flexibility in prescribing the end condition

along the base, z = 0. The number of nodes subjected to a unit vertical

displacement can be specifically identified and can be less than the

total along the base, allowing modelling of cases where only part of the
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Fig. 4.4. Boundary Conditions for Finite Element Model.
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base is supported. A second special base condition fixes the vertical

displacements and subjects the single center node to a vertical unit

force. The radial displacement can be specified as fixed or free in

either case.

There are two choices for the end condition at the top, z = h.

First, the top surface can be specified free, not limiting either the axial or

radial displacements. Secondly, it can be specified as having a rigid,

distributed mass creating an end condition in which all the vertical

displacements are forced to be equal. Consequently, a vertical stress

is applied due to the inertia of the mass. The radial displacement can

also be specified as fixed or free when the rigid mass is present, and

will be the same as is specified for the bottom.

A qualitative study of the impact that each of these end

conditions has on the model's response is included in Section 4.4. A

comparison of the model response and a response measured in an

actual laboratory test is discussed in Chapter 7.3.

4.2.4 Program Input/Output

The finite element program was written with two input versions;

one uses screen and keyboard interaction and the second reads input

directly from a file. The input information required is listed in Table 4.1

and is briefly described below.
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Table 4.1. Input Variables for Finite Element Model.

Input Parameter Units Program Variable

A. Element Description

No. of Layers Each NZ
No. of Elements Each NR
Total Height inches H
Element Thickness inches Ti. = 1 = NR

B. Material Properties

Young's Modulus psi E
Shear Modulus psi G
Poisson's Ratio PR
Unit Weight pcf GAM
Damping Ratio DAMP

C. Boundary Conditions

No. of Displaced Nodes Each NV
at Base
Weight of Added Mass, lbs AMASS
Horizontal Fixity IHOR
(Top & Bottom)

D. Frequency Range

Starting Frequency Hz BFR
Ending Frequency, Hz EFR
Initial Frequency Increment Hz DF

Element Size/Dimension: The operator provides the number of

vertical layers and the total height, in inches, of the model specimen.

The program divides the total height by the number of layers so that

each layer has the same height. The total number of radial elements
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and their individual thicknesses in inches are input by the operator

starting with the inner element first. The radial dimensions of the

respective elements are the same for each layer.

Material Properties: Two of the following three material

properties must be entered: Young's Modulus, shear modulus, and

Poisson's ratio. The missing property is entered as zero and

determined from the other two by assuming isotropic properties. The

total unit weight is entered in pounds per cubic foot and the damping is

entered as a decimal, for example, D = 0.05 for 5 percent material

damping. The model uses hysteretic damping so the material

constants are converted to complex form using the input value for

damping (G* = G[I +iD]).

Boundary Conditions: The number of displaced nodes at the

base is entered. This is equal to the number of fully supported

elements plus one. If a point load at the center of the base is desired, a

zero is entered. If there is an added mass at the top, its weight is

entered in pounds. If a zero is entered for the added mass, the top

boundary is free. Lastly, the horizontal displacement condition at the

top and bottom is specified as fixed or free.

Frequency Range: The starting and ending frequency of the

desired frequency range are entered along with the initial frequency

increment. The program will automatically increment at 1X, 0.1X, or

0.01 X the specified increment depending on the change in magnitude
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of the transfer function, as determined by the two previous frequency

increments.

The output from the program is the response of the nodes along

the top surface for each steady state frequency. Only the response of

the node on the centerline was of interest in this study, although the

program could output both the horizontal and vertical displacements for

each top node. The response for a specific node is in the form of a

complex transfer function. (The transfer function in this form can be

read by another program to estimate the response, in the time domain,

to a transient input motion at the base). However, it is difficult to

interpret a transfer function in its complex form so it is converted and

displayed using amplification ratios and phase differences.

The amplification ratio at a particular frequency is the magnitude

of the complex value of the transfer function, and the phase difference

is the arctangent of the ratio of the imaginary and real part of the

complex value. A simple conversion program reads the complex value

of the transfer function at each frequency and produces a second

output file which lists the amplification and phase at each

corresponding frequency. The transfer function in this form can then be

graphed in a manner which is identical to that produced by the dynamic

signal analyzer (DSA) used for the longitudinal resonant column test

described in Chapter 7. This provides tremendous utility in comparing

the effect of different parameters on the response of a specimen and

permits a direct comparison with measurements made in the laboratory.
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4.3 Frequency Responses of Three Model Soils

Three model soils were chosen to study the effect of several test

parameters on the predicted response. These soils represent a

moderately stiff clay, a loose sand under low confining pressure and a

dense sand under moderate confining pressure. Their baseline

properties and dimensions are summarized in Table 4.2. The material

parameters have been related assuming the model soils are linearly

elastic, isotropic materials with hysteretic damping. The minimum

element size was selected as one-tenth of the minimum wavelength that

was computed by dividing the shear wave velocity by the highest desired

frequency. The shear wave velocity was chosen because it is the lowest

of the three velocities (Vs<Vc<Vp), and thus, it is the most conservative.

The frequency response (transfer function) for each model soil is

illustrated in Figs. 4.5, 4.6, and 4.7, where both the relative amplification

and phase are shown for each soil. These response curves are for the

top node on the centerline of the mesh, a point which corresponds to the

location of the top vertical accelerometer in the test apparatus. Each

case here assumes a free surface (no added mass) at the top and

unrestrained horizontal motions at the base.

The one qualitative observation which is common to all response

curves, regardless of the input parameters, is that the peak amplitudes

essentially correspond to phase angles of plus or minus 90 degrees.
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Table 4.2. Typical Characteristics of Three Model Soils.

Stiff Loose Dense
aramand a

Shear Wave Velocity fps CT 650 350 800

Bar Wave Velocity, fps CB 1115 564 1239

Compressive Wave fps CL 2732 655 1306
Velocity

Poisson's Ratio v 0.47 0.30 0.20

Unit Weight pcf 7 95 95 105

Damping Ratio D 0.05 0.02 0.002

Length in L 5.6 6.3 6.3

Radius in a 1.4 1.4 1.4

Length-Diameter Ratio L 2.0 2.25 2.25

2a

Shear Modulus psi G 8664 2512 14506

Young's Modulus psi E 25472 6531 34815

Constrained Modulus psi M 153070 8793 38683

Maximum Frequency Hz F 5000 2500 5000

Minimum Element Size in dr 0.156 0.168 0.192
(CT/I OF)
Element Mesh Size 9 x 36 9 x 38 8 x 33
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Fig. 4.5. Transfer Function of Model Clay Specimen; L = 5.6 in, 2a
=2.8 in, Vs = 650 fps, and no added mass.
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at ±90 degrees, fn, which is the natural frequency of the undamped

specimen. This correspondence at :1:90 degrees phase is in

accordance with the solution for one-dimensional wave propagation in

a finite rod subject to steady-state displacement and inertial mass end

conditions as is discussed in Section 3.3.

A number of qualitative observations can be drawn by varying

the specimen input parameters and comparing the resulting transfer

functions. This has been done and is described in the following

section. The effect of changes in the specified end conditions is a more

complex subject and will be addressed in Section 4.4.

4.3.1 Effect of Stiffness on the Transfer Function of
Three Model Soils

The qualitative effect of stiffness on the frequency response of a

specimen can be deduced by comparing the amplification curves of

each of the three model soils. It is easily noted by examining Figs. 4.6

and 4.7 that, as soil stiffness increases, the magnitude of the natural

frequency corresponding to each relative mode increases. For

example, the frequencies of the first peak amplitude for the loose and

dense sand are approximately 275 and 600 Hz for Young's moduli of

6,531 and 34,815 psi, respectively. This is consistent with one-

dimensional theory which suggests that frequency is proportional to the

square root of the stiffness. An exact correlation is not possible here
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because the other parameters such as damping and Poisson's ratio are

also varying. Their relative effects on specimen response are

discussed in the following sections.

4.3.2 Effect of Damping Ratio on the Transfer
Function of a Loose Sand

The transfer functions of the dense sand, D = 0.2%, and two

model clays, D = 5.0% ano D = 20%, are shown together in Fig. 4.8.

Although a material damping value of 20% is high for a typical clay,

some of the polyurethane specimens that were tested (see Chapter 8)

had damping values nearly this high. Figure 4. sli, ows the frequency

responses of the model loose sand at three damping ratios, D = 5.0%,

D = 2.0% and D = 0.5%, which corresp:,nd to ,oical values for material

damping in most soils.

Several qualitative observations are immediately apparent. As

the damping ratio increases, the magnitudes of the corresponding

peaks in the amplification curve decrease. It also can be shown that

the frequency corresponding to the peak at each mode, fr, decreases

slightly with increasing damping. It can be further noted that the

decrease in magnitude of successive amplitude peaks becomes

greater as the damping ratio increases. Lastly, the peaks are not only

lower but broader for successively higher modes.
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Additional observations can be made by examining the phase

diagrams in Figs. 4.8 and 4.9. The slope of the phase diagram in the

vicinity of the natural frequency (at ±900) is steeper for lower values of

damping, and the slope subsequently decreases for consecutively

higher modes. Further, the values of the natural frequencies increase

for very high damping values, most likely reflecting the increase of

damping in the stiffness value. However, it appears that small changes

in damping do not affect the value of the natural frequency when

damping is confined to a range between 0.5 and 5.0 percent.

This behavior in both the amplitude and phase response curves

can be compared to the single-degree-of-freedom system such as that

illustrated in Fig. 4.10 from Richart et al (1970). Similar behavior is

noted for fr and fn as was seen for the range of damping values (0.2% -

5.0%) and frequencies (0-5000 Hz) used for this study.

4.3.3 Effect of Length and Diameter on the Transfer
Function of a Loose Sand

In order to examine the impact of changes in the length or the

diameter on the response of a specimen, five differently sized

specimens were chosen for the model loose sand. Three of the

specimers had the same radius and different lengths and three had the

same length and different diameters.
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Fig. 4.10. Response Curves for a Viscously Damped Single-
Degree-of-Freedom System. (From Richart et al, 1970)

The effect of length on the transfer function is illustrated in Fig.

4.11. It is apparent that the natural frequency of each respective mode

decreases as the sample length increases. This follows directly from

the one-dimensional solution which shows for the fixed-free case,

(2n-1) (4.30)0 2L
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or that the natural frequency is simply inversely proportional to the

sample length.

The effect of diameter (2a) is illustrated in Fig. 4.12. It can be

seen that the number of modes clearly visible without interference from

higher frequency motions decreases as the diameter increases, or as

the length-to-diameter ratio decreases. These high frequency motions

could be due to the higher propagating modes described in the three-

dimensional solution for waves propagating in an infinite rod

(discussed in Chapter 3). Without specifically explaining their cause, it

is obvious that the presence of these high frequency motions prohibits

the clear identification of the natural frequencies which are required to

compute the Young's modulus. Specimens tested in this research

normally had length-to-diameter ratios of 2.0 to 2.5, and were primarily

limited to this size because of the test apparatus. Nevertheless, it was

normal to clearly observe three or four natural frequencies.

4.3.4 Effect of Poisson's Ratio on the Transfer

Function of a Dense Sand

The transfer functions of the model dense sand at three different

values of Poisson's ratio are shown in Fig. 4.13. In this exercise, the

value of the Young's modulus was held constant and the shear
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Table 4.3. Effect of Poisson's Ratio on the Response of a Model Dense

Sand*.

a. Comparison of Natural Frequencies

Poisson's Natural Frequency**, fn, Hz

Ratio Mode 1 Mode 2 Mode 3 Mode 4

0.15 405.3 1364.7 2415.3 3137.2

0.20 405.8 1360.2 2380.8 3088.9

0.30 404.9 1348.3 2308.2 2988.3

b. Comparison of Computed Velocities

Poisson's Bar Wave Velocity +, Vc, fps
Ratio Mode 1 Mode 2 Mode 3 Mode 4
0.15 1240.8 1241.4 1241.5 ---

0.10% ++  0.15% 0.15% ---
0.20 1242.6 1241.4 1241.7 1240.9

0.24% 0.15% 0.17% 0.10%
0.30 1240.8 1241.7 1242.4 1242.8

0.10% 0.17% 0.23% 0.26%
* L = 6.3 in, 2a = 2.81 in, CB = 1239.6 fps, D = 0.2%, MR = 2.0

** Natural Frequencies determined at $ = ±900.

+ Computed using reduction program described in Chapter 7.
++ Percent change from input value of bar wave velocity.

modulus was varied to obtain the appropriate values of Poisson's ratio.

The responses were compared for a model specimen with an added

mass that was half of the mass of the specimen (resulting in a mass

ratio, MR, of 2.0). Table 4.3 compares the natural frequencies and the
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bar wave velocities (computed in a manner described in Chapter 7) for

each value of Poisson's ratio.

It appears Poisson's ratio has little effect on the computed

natural frequencies or on the value of the bar wave velocity computed

from them. It has no discernable effect on the frequency of the first

mode and causes less than one quarter of a percent error in the

computed velocities for any mode. It is reasonable to expect that any

significant variations in Poisson's ratio will probably be accompanied

by significant changes in other properties such as stiffness, the effect of

which will likely overshp'.ow any effects attributable to changes in

Poisson's ratio.

4.4 The Effect of End Conditions on the Transfer

Function of a Dense Sand

The finite element program was especially written with the ability

to change the end conditions in order to examine their effect on the

transfer functions of the model specimens. Of particular concern is the

effect of a rigid mass at the top, the amount of base support and the

horizontal fixity at the ends. Each of these points is addressed

separately in the following paragraphs.
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4.4.1 Effect of a Rigid Top Mass on the Transfer

Function of a Dense Sand

Almost all dynamic laboratory tests involving soil have an added

mass at the top of the specimen because of the presence of a top cap

and accelerometers for dynamic measurements. Only in the case of

synthetic or pavement materials can an accelerometer be glued directly

to the test specimen and its presence be neglected, providing its weight

is small compared to that of the specimen's. Further, in the case of a

soil specimen using a top cap, the relative stiffness between the

material of the top cap (in this case stainless steel) and the soil is quite

large. Therefore, the top cap is presumed rigid with respect to the soil,

and it is assumed that the vertical displacements along the top of the

specimen are forced to be equal.

To examine the effect of a rigid mass at the top of a specimen

two more transfer functions were computed for the dense sand

assuming added masses weighing 1.179 and 4.714 pounds,

corresponding to mass ratios of 2.0 and 0.5, respectively. (Recall the

mass ratio was defined in Chapter 3 as the mass of the sample divided

by the added mass at the top.) The resulting transfer functions are

plotted along with the free surface transfer function in Fig. 4.14. The

natural frequencies and computed bar wave velocities for each of the

first four modes are summarized in Table 4.4.
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Table 4.4. Effect of Added Mass on the Response of a Model Dense

Sand*

a. Comparison of Natural Frequencies

MassA Natural Frequency**, fn, Hz

Ratio Mode 1 Mode 2 Mode 3 Mode 4
0,., 589.6 1746.7 2745.3 ---

2.0 405.8 1360.2 2380.8 3088.9

0.5 246.2 1230.5 2312.0 3072.0

b. Comparison of Computed Velocities

MassA Bar Wave Velocity+, Vc, fps

Ratio Mode 1 Mode 2 Mode 3 Mode 4
1256.6 1254.1 1249.0
1.37% +- 1.17% 0.76% ---

2.0 1242.6 1241.4 1241.7 1240.9
0.24% 0.15% 0.17% 0.10%

0.5 1240.8 1241.5 1242.0 1242.8
0.10% 0.16% 0.19% 0.26%

A Mass Ratio = Mass of Specimen/Added Mass.
* L = 6.3 in, 2a = 2.81 in, CB = 1239.6 fps, D = 0.2%, MR = 2.0

** Natural Frequencies determined at ± = 900.
+ Computed using reduction program described in Chapter 7.

++ Percent change from input value of bar wave velocity.

The most obvious observation is the reduction in natural

frequency of each of the respective modes with the increase in the

added mass. The added mass also reduces the amplification slightly at

each resonant peak, having a greater impact on the higher modes.



109

Probably most important is how the presence of the added mass

appears to improve the agreement of the computed bar wave velocity

with the input value. This implies that having the added mass may

improve the accuracy of the measured values for the bar wave velocity.

4.4.2 Effect of Base Support on the T, ansfer
Function of a Dense Sand

Any laboratory testing involving a natural soil necessitates a

condition where the base is completely supported. However, some

synthetic and pavement materials were larger than the available

sample base, and consequently were not fully supported. For the

purposes of comparison, the base ratio is defined as the ratio of the

area of the base to the sample cross-sectional area. Thus a base ratio

of 1.00 is a fully supported base. Two additional transfer functions were

determined for the dense sand assuming a free surface at the top and

assuming base ratios of 0.766 and 0.563, corresponding to a 2.81 in.

diameter sample supported on 2.46 in. and 1.56 in. bases, respectively.

The transfer functions for the three cases are shown togither in Fig.

4.15, and the natural frequencies and computed bar wave velocities for

each of the first four modes are summarized in Table 4.5.

Two observations can be made by examining Fig. 4.15. First, the

natural frequencies decrease markedly when the base diameters are

less than 87.5 percent of the sample diameter. Consequently, the
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Table 4.5. Effect of Base Ratio on the Response of a Model Dense

Sand*

a. Comparison of Natural Frequencies

Bases Natural Frequency** fn, Hz

Ratio Mode 1 Mode 2 Mode 3

1.00 589.6 1746.7 2,45.3

0.77 584.9 1734.6 2739.1

0.56 533.7 1593.9 2591.6

b. Comparison of Computed Velocities

BaseA Bar Wave Velocity+ , VC, fps

Ratio Mode 1 Mode 2 Mode 3
1.00 1256.6 1254.1 1249.0

1.37%++ 1.17% 0.76%
0.77 1246.8 1247.0 1247.3

0.58% 0.15% 0.17%
0.56 1139.3 1160.3 1203.9

-8.09% -6.40% -2.88%

A Base Ratio = Area of base pedestal/area of sample.
* L = 6.3 in, 2a = 2.81 in, CB = 1239.6 fps, D = 0.2%, Free Top.

** Natural Frequencies determined at 0 = ±900.

+ Computed using reduction program described in Chapter 7.

++ Percent change from input value of bar wave velocity.

computed value of the bar wave \,elocity can be five to ten percent

below the input value, underestimating the Young's modulus by up to

20 percent. Second, the influence of the base ratio tends to increase

for the higher modes. Nevertheless, for materials similar to dense
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sand, it can be concluded that, if the base diameter is greater than 90

percent of the sample diameter, the computed bar wave velocity from

the first few modes will be within two percent of the theoretical input

value.

4.4.3 Effect of Horizontal Fixity at the Specimen
Ends on the Transfer Function of a Dense

Sand

The effect of a fixed or free horizontal displacement condition at

the specimen ends is illustrated in Figs. 4.16 and 4.17. Figure 4.16 is

the response of a dense sand with a free surface at the top, i.e. only the

horizontal displacements at the base are fixed. Figure 4.17 is the

transfer function of the dense sand with an added mass at the top, i.e.

the horizontal displacements are fixed at the bottom and the top. The

natural frequencies and computed velocities are summarized for each

case in Table 4.6.

The fixity of the horizontal displacements at the bottom appears

to have little impact on the frequency response, with only a minor effect

appearing in the third mode. The fixity of displacements at both the

bottom and the top appears to have little effect on the first two modes,

while there is a minor increase in the natural frequency of the third

mode. A similar trend appears in the computed bar wave velocities,

where the fixed end conditions increase the error in the computed
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Fig, 4.16. Effect of Horizontal Fixity at the Base on the Transfer

Function of a Model Dense Sand Specimen; L = 6.3 in, 2a

=2.81 in, Vs = 800 fps, D = 0.2% and no added mass.
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Transfer Function of a Model Dense Sand Specimen; L
6.3 in, 2a = 2.81 in, Vs = 800 fps, D = 0.2%/ and MR = 2.0.
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Table 4.6. Effect of Horizontal Fixity on the Response of a Model

Dense Sand.

a. Comparison of Natural Frequencies

Natural Frequency**, fn, Hz

MR= Mode 1 Mode 2 Mode 3 Mode 4

u - Free 589.6 1746.7 2745.3 ---

u - Fixed 590.4 1751.0 2765.9 ---

MR = 2.0

u - Free 405.8 1360.2 2380.8 3088.9

u - Fixed 406.0 1369.4 2419.9 ---

b. Comparison of Computed Velocities

Bar Wave Velocity + , Vc, fps

MR=oo Mode 1 Mode 2 Mode 3 Mode 4
u - Free 1256.6 1254.1 1249.0 ---

1.37%++ 1.17% 0.76% ---

u - Fixed 1258.2 1256.6 1254.3 ---
1.50% 1.37% 1.19% _ ---

MR = 2.0
u - Free 1242.6 1241.4 1241.7 1240.9

_ 0.24% 0.15% 0.17% 0.10%
u - Fixed 1243.2 1248.9 1255.1 ---

_ 0.29% 0.75% 1.25% ---

* L = 6.3 in, 2a = 2.81 in, CB = 1239.6 fps, D = 0.2%.
" Natural Frequencies determined at 0 = ±90".

+ Computed using reduction program described in Chapter 7.
++ Percent change from input value of bar wave velocity.
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velocity. Nevertheless, the total error still does not exceed two percent,

so it is possible to conclude that the horizontal fixity will have little effect

on the value of the bar velocity measured in the laboratory.

4.5 Summary

A finite element program was developed to study the relative

influence of a number of material properties and boundary conditions

on the frequency response of three model soils. The program utilized

two-dimensional, four-node, axisymmetric, linear elements assembled

in layers to model solid cylindrical specimens. The program output is

the transfer function for the relative motion of points at the top of the

model specimen resulting from a unit vertical displacement at the

bottom. The three model soils represented a stiff clay, a loose sand

under a low confining pressure and a dense sand under a moderate

confining pressures.

As was expected, specimen stiffness and length have a direct

impact on the natural frequencies of the model specimens. The natural

frequencies of the specimen are roughly proportional to the square root

of the specimen stiffness and inversely proportional to the specimen

length. Also, greater length-to-diameter ratios (from smaller relative

diameters) provide a larger number of observable natural frequencies

before they are obscured by higher frequency motions. t is further
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shown that there is little impact on the natural frequencies for model

specimens with damping less than five percent. However, increases in

damping decrease the peak magnitudes of the transfer function, and

that decrease becomes more pronounced for successively higher

modes. Lastly, moderate differences in the Poisson's ratio of the

material appear to have little effect on the natural frequency or the

computed bar wave velocity of a specimen.

A qualitative examination of the effect oi various end conditions

was also conducted. The presence of a rigid mass at the top

significantly reduces the natural frequencies of the specimen.

However, it is shown that the specimen with the added mass predicts

the bar wave velocity much better than if the specimen top is free. The

natural frequencies of the model specimens are also reduced if the

base diameter is less than 90 percent of the sample diameter. Lastly,

the horizontal displacement condition at the ends has little effect on the

natural frequencies of the specimen, only increasing the error in the

computed bar wave velocity from less than one to between one and two

percent.



Chapter Five

Test Equipment

5.1 Introduction

The equipment used to construct the Multi-Moduli Testing Device

(MTD) was selected using several criteria, specifically: cost, commercial

availability, versatility, potential for automation and ability to meet the

goals of the research study. It is important to remember that the MTD was

designed to study the impact of stress state on the behavior of a

cohesionless sand and, therefore, is necessarily more complicated than

if it were designed to study intact, self-supporting materials such as

plastics or Portland cement concrete. Necessarily then, the discussion in

this section addresses testing cohesionless samples.

The MTD was designed to independently measure three different

wave velocities in a sand specimen subjected to biaxial states of stress.

Consequently, it has the ability to determine three different moduli,

specifically; the constrained, Young's, and shear moduli. Most

importantly, these measurements can be conducted without changing the

stress state on the sample. The MTD has the capability to vary the stress

in the axial direction, either in compression or extension. As a result, a

wide variety of test series can be designed to test the impact of stress

path on the stiffness of sands and other soils.
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This chapter describes the equipment assembled to construct the

MTD and to perform the three principal tests it was designed to conduct.

A detailed list of the equipment components and their manufacturers is

included in Appendix E. A description of the sample preparation

procedures, and associated equipment, is also included in this chapter.

5.2 The Multi-Moduli Testing Device (MTD)

The MTD can be divided into three major subsystems which

roughly correspond to their three principal functions. The functions of the

three major subsystems are: 1) apply and measure the state of stress in

the test specimen, 2) provide dynamic excitation, and 3) sense and

record the specimen's response to the dynamic excitation. These three

subsystems will be referred to as the Confinement, Excitation, and

Monitoring systems, respectively. Figure 5.1 is a schematic diagram of

the MTD. Figure 5.2 is a photograph of the MTD (with the containment

cell and sensor cables removed).

5.2.1 Specimen Confinement System

Figure 5.3 is a schematic drawing of the confinement system of the

MTD. The containment cell is a 10-inch diameter (ID), stainless steel

cylinder approximately 18-inches high. The top and bottom plates are
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Fig. 5.1. Schematic Diagram Mufti-Modui Test Device (MTD).
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Fig. 5.2. Multi-Moduli Test Device (MTD) with Outer Cell and

Sensor Cables Removed.
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Fig. 5.3. Schematic Diagram of Specimen Confinement System in
the MTD.
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1.4 inch thick stainless steel pieces which are 14-inches in diameter and

are connected by four, 0.75-inch (OD) stainless steel rods. The

containment cell is sealed using standard butile rubber O-rings in face

seal glands cut in the top and bottom plates.

Cell pressure is controlled by a pressure regulator (0-150 psi

range) and monitored using a pressure transducer, calibrated using a

standardized Heise pressure gage (±0.2 psi). Internal specimen

pressure is controlled by a vacuum regulator (0-30 psi) and monitored by

a vacuum transducer (0-48 w/linearity of +0.5%), calibrated using a

standardized Heise vacuum gage (±0.5 psi). Axial pressure is varied

using a double acting air piston and monitored using a standard static

load cell (50 Ib, 100 lb or 300 lb capacity). The axial load is transferred to

the sample through a specially designed vibration isolation assembly.

This assembly is illustrated in Fig. 5.4 and is designed so the static load

is transferred to the top cap ring through springs in compression, while

allowing the sample top to move dynamically. Changes in sample height

are measured using 11-mm (diameter) proximiters with a sensitivity

range between 0.04 and 0.16 inches with a linearity of ±0.004 inches. A

complete list of the equipment model numbers and manufacturers is

included in Appendix E.
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Fig. 5.4. Schematic Diagram of Axial Loading and Longitudinal
Vibration Isolation Assembly.
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their opposing faces. To make a vibration g3nerator, the disks are

stacked and their feces connected in series. This crystal stack is then

sandwiched between a reaction mass and an attachment fixture. When a

voltage is applied across the crystals they expand, reacting against the

inertia of the backing mass and apply a force to the test structure through

the attachment fixture. Some shakers contain an accelerometer and/or

force transducer in the attachment fixture which allows accurate

monitoring of the input vibration to the test structure. The shaker is

powered by an amplifier connected through an impedance matching

network. A schematic of the piezoelectric shaker system is shown in Fig.

5.5.

A schematic of the shaker mounted in the MTD is shown in the Fig.

5.6. The shaker is mounted vertically beneath the test table and

connected to a stainless steel piston which passes through an O-ring

seal in the base plate. The specimen base attaches directly to the top of

this piston allowing the flexibility of changing bases without

disassembling the shaker or base seal plate. The shaker is mounted on

a threaded circular plate which allows minor adjustments in the height of

the shaker and subsequently the specimen base.

The tapping device used as a source for the shear pulse test is

made of a 0.125-inch diameter stainless steel rod mounted on a solenoid

that was salvaged from an 8-track tape player. The function generator is

connected through a rectifier circuit to a variable amplifier/power supply

and is connected via an off-on switch to the tapping device. The function
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Fig. 5.5. Schematic Diagram of Piezoelectric Shaker System in the

MTD.

generator provides a square wave signal which the rectifier chops so

only the positive voltage steps of the square wave reach the amplifier.

When the switch is closed, the positive voltage signal activates the

solenoid and drives the rod against the side of the base pedestal. A

small piece of steel is glued to the side of the base to protect its surface.

A schematic of the shear wave source is included in Fig. 5.7.
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Beneath Test Cell of MTD.
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Fig. 5.7. Schematic Diagram of Shear Wave Generator in the MTD.

A function generator provided the source signal for both pulse

tests. For the longitudinal resonant column test, the source signal was

internally generated and controlled by the dynamic signal analyzer that

was also used for measuring and recording the specimen response. A

complete list of the equipment model numbers and manufacturers is

included in Appendix E.
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5.2.3 Dynamic Monitoring System

The third principal subsystem senses the dynamic response of the

specimen and records that response for future analysis. The two main

components of this system are the sensing devices and the recording

devices.

Piezoelectric accelerometers were used exclusively to sense the

input motion and response of the specimen. Two types of

accelerometers were used. The first is an internally amplified, high

sensitivity, high frequency accelerometer. An internal hybrid charge

amplifier converts the high impedance charge signal of the piezoelectric

crystal to a strong, low impedance voltage output signal. These

accelerometers have a voltage sensitivity of approximately 100 mV/g, a

frequency range (±5%) of 3-15,000 Hz and a mounted resonance greater

than 50,000 Hz. The second type of accelerometer was a miniature

charge output accelerometer. These lightweight accelerometers have a

charge sensitivity of approximately 1.5 pC/g, a frequency range (±1 dB)

range of 1-18000 Hz, and a mounted resonance greater than 55,000 Hz.

The charge accelerometer requires an in-line charge converter to convert

the high impedance charge output to a low impedance voltage output. A

summary of the characteristics of both types of accelerometer is given in

Table 5.1.

The internally amplified accelerometers and the in-line charge

converters used for the charge output accelerometer require +18 VDC
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Table 5.1. Accelerometer Characteristics.

(a) (b)

Voltage Sensitivity, mV/g 100 1.3

Transverse Sensitivity, % 5 5

Acceleration Range, g 60 1000

Resonant Frequency, kHz >50 55

Frequency Response (±3dB), Hz 2-25,000 0.6-30,000

Power Requirements, +VDC 18 1 8

Weight, grams 15 1.3

(a) Internally amplified, low impedance accelerometer.
(b) Charge output, high impedance accelerometer w/in-line charge

converter.

power to operate. In addition, signal amplification is sometimes required

to boost the magnitude of the output signals to enable accurate recording

by the readout equipment. A general purpose combined power unit and

amplifier with selectable gains of 1 X, lOX, and 1 OX provides both the

DC power required and permitted matching output signal levels to the

recording equipment. A conceptual diagram of the connections for both

types of accelerometers is given in Fig. 5.8.
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Two recording devices were used; one for the axial and shear

pulse tests and one for the longitudinal resonant column test. A 6-

channel digital recording oscilloscope is used to record, temporarily

store, and transfer time domain signals from the pulse tests. The

oscilloscope has a sampling rate which ranges from 20 MHZ to 1 MHz

depending on the number of channels being utilized. Each channel has

a 10-bit vertical resolution, which increases to 14-bit with averaging. The

amplitude range is 1 mV/div to 10 V/div (10 divisions) with an accuracy of

±1%+0.Oldiv. The oscilloscope also has a versatile menu of wave form

and measurement functions. The oscilloscope triggers on the source

signal provided by the function generator, or on one of the

accelerometers. The signals recorded in this research were typically the

average of 64 or 128 repeated inputs. Figure 5.9 illustrates the

equipment set up for the pulse tests using the digital recording

oscilloscope.

A digital dynamic signal analyzer is used to control and record the

frequency response of the specimen for the longitudinal resonant column

test. The signal analyzer has two channels and an internal function

generator. As used in this test, the analyzer outputs a steady-state

sinusoidal source signal to the vibration generator and then measures

the relative amplitude and phase between the signals received at the two

input channels. The analyzer can perform user-programmed frequency

sweeps, recording and displaying the frequency response spectra in
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the MTD.
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relative amplitude and phase. Figure 5.10 illustrates the equipment set

up for the longitudinal resonant column test using the dynamic signal

analyzer.

Neither the digital recording oscilloscope, nor the dynamic signal

analyzer, has permanent file storage capability so they have to be

augmented with disk file storage. Both have IEEE 488 interfaces and can

transfer files, as well as be controlled remotely. The digital recording

oscilloscope requires another instrument, such as a computer to act as

the controller, directing the transfer of the recorded wave form from the

oscilloscope to disk file storage. The dynamic signal analyzer can act as

a controller itself and thus only requires an external file storage device.

Data files were recorded in binary form on 3.5-inch diskettes.
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5.3 Test Specimen Preparation and Set Up

This section briefly describes how each test material was installed

in the MTD. The bulk of the dis'-ussion in this section is directed toward

the preparation of uncemented sand specimens for which a special mold

and pluviation device were constructed.

5.3.1 Preparation of Synthetic Specimens

Synthetic specimens were epoxied to the sample base using a

rapid-setting (5 minute) two-part epoxy. When a top cap was used, it too

was epoxied to the top of the specimen. In those tests in which a top cap

was not used, the accelerometers were glued directly to the center of the

top of the specimen using quick setting (1 minute) superglue. In all

cases, sufficient epoxy or glue was used to insure an even continuous

bond between the test specimen and the base and top cap surfaces.

Each synthetic specimen was machined to a right circular cylinder

with their ends smooth to ±0.001 inches across the diameter. Their

diameters ranged from 1.4 to 4.0 inches and never varied over the length

by more than ±1% of the diameter.
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5.3.2 Preparation of Compacted Clay Specimens

Compacted clay specimens were not glued at the ends, but a

moderate amount of vacuum grease was applied to improve contact at

the ends. The clay specimens were encased in a latex membrane that

was secured at the base and top cap with butile rubber O-rings. A minor

amount of vacuum grease was applied to the base and top cap sides to

improve the seal. Vacuum grease was also used for some tests to

improve the contact between the specimen and the base and top cap.

Three evenly spaced strips of filter paper less than 0.5-inches wide ran

the length of the specimens between the clay surface and the membrane.

All clay specimens were about 2.8 inches in diameter and 5.6 inches in

length.

5.3.3 Preparation of Uncemented Sand Specimens

Preparation of sand specimens is made difficult by the fact sand

has no strength unless confined. For this reason a special sample mold

was constructed to prepare sand samples. In addition, a new pluviating

apparatus was constructed which allowed the preparation of test

specimens with consistent densities. A step by step description for the

preparation of a sand is included in Appendix F.

Miura and Shosuke (1982) demonstrated a sample preparation

technique using a multiple sieving pluviation (MSP) apparatus and
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determined, with extensive testing, its effect on the static and cyclic

deformation and strength properties of sand. Their apparatus was

composed of a hopper with a variable nozzle diameter, and a stack of six,

8-inch diameter sieves through which the sand fell into the sample mold.

They demonstrated the MSP gave a wide range of reproducible

specimen densities by controlling the height of fall and the nozzle

diameter. Their results showed that the nozzle diameter was the

predominate factor controlling specimen density. LoPresti and Pedroni

(1989) have also shown, using a similar apparatus, that the resulting

specimen density was mainly a function of deposition intensity

(weight/time/area). In both cases, the controlling factor was the rate at

which the sand was allowed to fall.

The sample mold is made of two halves which bolt tightly togethr r,

forming a cylindrical shell which has a diameter equal to the base plus

twice the membrane thickness. The membrane is precut to a specific

length, installed on the base and held with one O-ring. The mold is

carefully fitted together around the base with the O-ring fitting in the slot

provided for it in the mold. After bolting the two halves together and

levelling the mold, the membrane is stretched over the mold's top edge,

and an aluminum restraining ring is slipped on. A 1.0 to 1.5 psi vacuum

is applied at the ports in each mold half to hold the membrane against

the inside surface of the mold. The membrane is then adjusted so there

are no folds or creases in it. The sample mold is now ready to permit

pluviation of the sand.



139

The MSP apparatus developed for this research has a large

funnel at the top to hold the sand. Various sized nozzles can be inserted

in the funnel which control the rate of sand fall. A short 6-inch section

separates the funnel from the top-most sieve which is typically sized 5 to

15 times the D50 grain size. The column contains six sieves, spaced two

inches apart and oriented at 45 degrees to one another. The sieve

openings increase in size from top to bottom, with the bottom four being

the largest and the same. Below the bottom sieve is a 12-inch long

section through which the sand falls freely into the mold. The MSP is

constructed of cast acrylic tubing with an inside diameter just less than

the mold diameter. The MSP column rests directly on the top of the mold

and is held in place by an acrylic retaining ring. Enough sand to fill the

mold and 2 to 3 inches of the bottom of the MSP column is preweighed,

poured in the funnel, and then released.

After the sand has pluviated, the column is disassembled nne

section at a time and all loose sand "vacuumed" into a preweighed flask.

The excess sand in the base of the column is "vacuumed" and the top of

the mold is struck off using a steel straight edge taking care to capture all

excess sand and not disturb the sand in the mold. The difference

between the weight of the sand used and the weight recaptured is the

specimen weight.

Finally, the top cap is placed carefully on the top of the specimen,

the membrane folded up its sides and an O-ring installed. The vacuum in

the mold is released and applied to the specimen itself. Now the mold is
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removed, the vacuum on the specimen increased to a predetermined

level, and the initial diameter and height are measured using a Pi tape

and digital calipers, respectively. The remaining steps in assembling the

MTD for a test series are listed in Appendix F.

5.4 Summary

The Multi-Moduli Testing Device (MTD) was designed to

independently measure three different wave velocities in a sand

subjected to isotropic and biaxial states of stress. The MTD has the

capability to vary the axial stress of the sample in compression or

extension and yet, through a vibration isolation assembly, still allows the

top of the specimen to move dynamically in response to the excitation of

the base.

The MTD is divided into three main systems, which are the

Confinement, Excitation, and Monitoring Systems. The Confinement

System is composed of the following: (1) a pressure and a vacuum

transducer to monitor the confining pressure on the specimen, (2) two

proximiters to determine changes in the length of the specimen, (3) a

load cell to determine the axial load on the specimen, and (4) the

pressure and vacuum panels and the pressure chamber which apply the

state of stress in the specimen.
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There are two wave motion generators in the Excitation System.

The first is a piezoelectric vibration generator, which is mounted vertically

in the base of the MTD and connected to the sample base pedestal. The

shaker vibrates the sample longitudinally using impulse (for constrained

modulus) or sinusoidal (for Young's modulus) signals input by a function

generator. The second wave motion generator is an electromechanical

tapper which is mounted horizontally and strikes the side of the base

pedestal (for shear modulus).

The Monitoring system is composed of the piezoelectric

accelerometers that sense the motion of the specimen and the digital

recording devices which capture and store the responses. Two

accelerometers are mounted on the base, one vertically and one

horizontally. Three accelerometers are mounted on the top cap, one

vertically and two horizontally. A digital recording oscilloscope (DRO) is

used to capture time records in the axial and shear pulse tests described

in Chapter 6. A digital dynamic signal analyzer (DSA) is used to

measure the frequency response of the sample in the longitudinal

resonant column test described in Chapter 7. Time records and

frequency responses are stored on diskettes for future analysis. A

detailed list of the equipment used in the MTD is included in Appendix E.

The cohesionless sand specimens were prepared for testing using

a Multiple Sieve Pluviating (MSP) column. The MSP column consists of

a stack of six sieves, topped by a funnel, which sits atop the sample mold.

The rate at which the sand falls, and to a lesser extent the height of fall,
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determines the density of the specimen. The rate of fall is controlled by

varying the size of the opening in the funnel at the top of the MSP. A

small opening (slow rate) results in specimens with high relative density

and a large opening (fast rate) results in specimens with low relative

densities. A detailed description of the construction of a sand specimen

using the MSP is contained in Appendix F.



Chapter Six

Measuring Constrained and Shear Moduli Using Pulse Tests

6.1 Introduction

The constrained modulus is commonly determined by measuring

the compression or dilatational wave velocity using pulse testing

methods. Two methods have been formalized by the American Society

for Testing and Materials (ASTM) to determine wave velocities in civil

engineering materials. First, ASTM C597-83, details test procedures to

deter.nine the pulse velocity in concrete, and the second, ASTM D2845-

69, d atails testing using ultrasonics to determine the pulse velocities in

rock.

All methods to determine pulse velocity consist of the same basic

step.- and equipment. An electromechanical generator and an

elect; omechanical receiver are attached to, or held in contact with, the

opp ,site sides/ends of a specimen. The generator produces a fast-rise-

time displacement pulse, and the motion of the receiver is measured. By

comfpanng the waveforms measured at the generator and receiver using

the : ame time base, a time for the pulse to travel the distance between

the generator and receiver can be determined. The distance travelled by

the pulse, divided by the travel time corrected for any instrument delays is

the pulse velocity.

143
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The equipment used for pulse testing is described in detail in

Chapter 5 and Appendix E and specific procedures are included in

Appendix F. The tests are described here only in general to illustrate the

process leading to determining the particular modulus.

6.2 Constrained Modulus from the Axial Pulse Test

6.2.1 Conducting the Axial Pulse Test

To conduct a pulse test to find the dilatational (or P-) wave velocity

of a sand specimen, the function generator and digital recording

oscilloscope(DRO) are used as configured in Figs. 5.5 and 5.9. The

configuration of the MTD for this test is also illustrated in Fig. 6.1. The

vertical accelerometers in the sample base and on the top cap are

connected to separate channels of the oscilloscope. The function

generator is connected to the vibration generator and also to a third

channel of the oscilloscope. The function generator is set to produce

one-half cycle of a square wave with a magnitude of 0 10 volts, a

frequency of 2000 Hz and is triggered every 0.10 seconds. The resulting

signal appears on the oscilloscope as a step function when compared to

the travel times measured in the specimens.

The oscilloscope is set to trigger on the signal produced by the

function generator because it provides a consistent trigger point. The

oscilloscope is set to average 128 measurements and then stop. A direc,
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Fig. 6.1. Arrangement of MTD for Conducting Axial Pulse Test.
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copy of the oscilloscope screen is provided as an example in Fig. 6.2.

Displayed in Fig. 6.2 are the responses of the base and top

accelerometers, with the trace for the top accelerometer highlighted

(darkened in the figure). After the test is complete, each waveform is

stored internally in the oscilloscope and the screen is cleared. The

stored waveforms are recalled, and, using zoom and amplification

functions on the oscilloscope, the waveforms are manipulated and

expanded for easier examination.

The time interval, tp, between the first arrivals of the pulse at the

bottom and top accelerometers is easily determined using cursors.

Figure 6.3 is an example of the oscilloscope configured to determine this

travel time. The travel time for this example is 372.5 Is. The length, L, of

the sample is determined using the initial measured length, adjusted for

any changes calculated using measurements from the proximiters. The

calibrated time delay between the accelerometers, td, is determined in a

separate test for each specific accelerometer configuration. In those

calibration tests, the top cap is placed directly on the base with a very thin

layer of vacuum grease between them and the same pulse test is

conducted. The values of these delays typically ranged between 7 and

10 tgs. A value of 9.5 Ius was measured for this accelerometer

configuration and is used in this example. The P-wave velocity, Vp, is

then calculated using
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L

Vp~ -(tp-td)" (6.1)

For the loose sand in Fig. 6.2, L= 0.2338 ft, and the resulting velocity is

1458 fps. The constrained modulus, M, then follows from the equation

M = pVp 2  (6.2)

where p is the mass density.

Several assumptions have been made in the process of

conducting and analyzing the axial pulse test. These include: 1) the first

arrival is due to a disturbance travelling at the dilatational wave velocity,

2) the input motion has a sufficiently high frequency to appear as a step

function, and 3) the strains in the specimen remain low enough to

assume that the material responds linearly elastically. These

assumptions are discussed in further detail in the following sections.

6.2.2 Justification for Identifying the First Arrival as

the Compression Wave Arrival

A theoretical solution for transient waves propagating in a semi-

infinite rod due to an impact on the end is presented in Chapter 3 and

Appendix C. A computer program was written which numerically

computes the solution for the particle velocity at positions relative to the

wave front corresponding to the elementary solution. This solution can
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be plotted versus time as done in Fig. 6.4 for Poisson's ratios of 0.25 and

0.49. The solutions are for a point in a rod th.at is at a distance four times

the diameter from the impact end. The arrivals of the elementary rod

wave, tb, and the corresponding dilatational wave arrivals, tp, are also

shown. Here the dilatational wave arrival was computed using CB and

Poisson's ratio and assuming an isotropic linearly elastic material. It can

be seen that motion at the observed point starts at about the time

corresponding to the time of arrival for a dilatational wave. It is also

observed, that as Poisson's ratio decreases, the time difference between

the dilatational and elementary bar wave arrival decreases. The arrival

of the dilatational wave appears to correspond to an amplitude which is

on the order of 10 percent or less o4 the first peak amplitude in the

waveform.

Therefore, for the purposes of this laboratory testing, the P- wave

arrival time was assumed to occur at a point when the waveform makes a

marked departure from the ambient level. This is illustrated in Fig. 6.3.

6.2.3 Impact of Input Frequency on the Measured

Compression Wave Arrival.

In Fig. 6.2 it is obvious that the motion of the accelerometer in the

base is very different from the step function input by the function

generator. The time record for the base accelerometer has a sharply

varying amplitude and dominant frequency. In addition, it should be
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noted that the wave arrives at the base accelerometer approximately

30 ;.s after the time it is output from the function generator. This delay,

and the resulting amplification and dominant frequency, are due to

delays in the power amplifier and impedance matching network, inertial

response of the piezoelectric crystals in the vibration generator, and the

time it takes for the pulse to travel through the steel base piston and the

base pedestal. The dominate frequency, about 45 kHz, appears to

correspond to the expected resonant frequency of piezoelectric crystals

in the vibration generator, subject to slight modification by the pulse's

passage through the steel piston and base pedestal.

This observation leads to the assumption that although the input

motion is not a true step function, it has a frequency sufficiently high in

comparison to the natural frequency of the specimen that it appears as a

step function. This conclu', ion is made noting that in Chapter 7 the first

natural frequency for the loose sand in this sample is approximately 400

Hz, making the excitation frequency nearly twcI orders of magnitude

higher. The study of the influence of input frequency on the observed P-

wave arrival is beyond the scope of this -. search. However, the finite

element model described in Chapter 4 should prove a useful tool. Fast

Fourier Transform (FF'1) algorithms can be used with the transfer function

output by the finite element program to compute a time response at the

top resulting from a specified input motion at the bottom.



153

6.2.4 Assumption of Small Strains in the Axial Pulse

Test

One fundamental assumption governing this research study is that

the strain levels generated in the specimen are so small that the material

behaves linearly elastically. For a typical sand this means that measured

strains should be below 10-3 percent.

It is a straightforward process to compute the maximum level of

strain which occurs in the specimen. There are two points in the axial

pulse test, the base and the top, where the acceleration amplitude is

known accurately. If the displacement at any point is assumed to be

governed by an equation of the form

w = Ae -ibt = A(coswt - i sinwt) (6.3a)

then

w= -Aoe-id (6.3b)

and

w = +Ao2e -i(t (6.3c)

so

w= -w/o or Wmax = Wa/i. (6.4)

From the waveforms recorded in an axial pulse test, it is a simple matter

to determine the maximum acceleration knowing the accelerometer

constants and the signal amplification. It is noted that it is inherently
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assumed that the maximum acceleration occurs on, or just after, the first

arrival and the impact of wave reflections and their coincidences is

ignored. For the example in Fig. 6.2, the maximum acceleration at the

top is 0.28 g's and at the bottom is 1.33 g's (where 1 g :- acceleration due

to gravity). The corresponding dominant frequencies can also be scaled

from Fig. 6.2. These are 20,000 Hz and 45,000 Hz for the top and bottom

accelerometers, respectively.

It can be shown through simple manipulation of the one-

dimensional equation of motion that

TzVc
w= E EzVc (6.5)

where

w = particle velocity in the z-direction,

T = stress in the z-direction,

Vc  = bar wave velocity,

E = Young's modulus, and

z = strain in the z-direction.

Thus, if the bar velocity for a material is known, even approximately, the

magnitude of the strain at maximum particle velocity can be computed

from

£:zmax = Wrnax (6.6)
COVc
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The bar wave velocity for this test was determined in Chapter 7 to be

approximately 1250 fps, thus the maximum strain was computed to be

5.7 x 10-6 percent at the top and 1.2 x 10-4 percent at the bottom, well

within the small strain region for this material.

6.2.5 Measurement Errors for the Axial Pulse Test

and Their Influence on the Constrained
Modulus

Table 6.1 is a summary of the approximate errors and their

propagation through the calculations to the final computed value of the

constrained modulus. The values presented in Table 6.1 are

approximated for the sand used as an example in this and the following

chapter.

6.2.5.1 Errors in Specimen Dimension and
Weight

The length is initially measured with an accuracy of ±0.01 inches

and adjusted for changes measured during a test series using the

proximiters. As the accuracy of the proximiters is about ±0.0001 inches, it

is believed any error in the length will be dominated by the initial

measurement.
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Table 6.1. Propagation of Errors in the Axial Pulse Test for a Loose

Sand at 6 - - 16.0 psi (IS02T7 Test)

Parameter Quantity Error Units %
Error

Length, L 6.37 ± 0.01 in 0.2%

Diameter, D 2.81 ± 0.01 in 0.1%
Volume, V 39.41 ± 0.12 in3  0.3%

Weight, W 983.0 ± 1.0 gram 0.1%
Unit Weight, y 95.10 ± 0.3 pcf 0.3%

Added Mass, Wm 485.5 ± 0.1 gram 0.02%

Travel Time, tp 372.5 ± 8.0 i s

Time Delay, td 9.5 ± 0.25 .LS

Net Travel Time, (tp-td) 363.0 ± 8.0 Is 2.2%

Compression Wave
Velocity, Vs 1462.2 ± 32.2 fps 2.2%

Constrained Modulus, M 6312600 ± 202000 psf 3.2%

43830 ± 1400 psi 3.2%

The diameter of the sample is also measured initially to ±0.001

inches or less, using a Pi tape. The initial diameter is the average of at

least three measurements which may range as high as ±0.005 inches

from their mean, thus, an assumed error of ±0.01 inches is considered

reasonable. However, unlike the length, the diameter is not adjusted
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using direct measurement. Changes in the diameter are computed using

the assumption that the strains experienced in the sample are equal in

the axial and radial directions. For isotropic loading this is a reasonable

assumption and not likely to introduce any appreciable error. However,

in the case of biaxial loading, this assumption is inherently wrong.

For a material under biaxial loading one expects that as the axial

dimension increases, the radial dimension will decrease in an amount

proportional to the Poisson's ratio. Consequently, the data reduction

program written to reduce test series data was written to account for this

volume change behavior. For moderately equal changes in the axial and

horizontal stresses (less than 0.5 psi), the diametrical strain is

proportional to the longitudinal strain and in the same direction. For

unequal changes in the respective stresses, the diametrical strain is

proportional to the longitudinal strain and taken in the opposite direction.

Further, a distinction is made whether the change is in the axial stress or

the horizontal stress. An assumed value of Poisson's ratio is used as the

proportionality constant. Typical values assumed for this study were

between 0.26 and 0.30 for the loose sand and between 0.16 and 0.22 for

the dense sand. For all tests on the sand, the largest change in length

was less than ±0.015 inches, which amounts to an axial strain of ±0.0025

for the specimen lengths used in this study. If one assumes a Poisson's

ratio of 0.30, then the diametrical strains would be on the order of ±0.001,

or one tenth of a percent or less.
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The error in the volume is simply the square root of the sum of the

squares of the appropriate errors of the length and the diameter. An error

in the sample weight is governed by the care used during sample

preparation. With the preparation technique described in Section 5.4

and Appendix F, it is believed that the weight of the sand samples can be

determined to within one gram. This is an error of about 0.1 percent for

the sample size used in this study. The error in the unit weight is the

square root of the sum of the squares of the appropriate errors for weight

and volume, resulting in an error of approximately 0.3 percent for the

sand samples used in this study.

6.2.5.2 Determining the Error in the

Constrained Modulus

The principal source of error in the travel time is determining the

time of arrival at the top. An examination of Fig. 6.2 shows the starting

time is easily determined from the base accelerometer time record.

However, the first arrival of the wave at the top accelerometer is less

clear and a range exists where the actual arrival may occur. This "arrival

window" is illustrated in Fig. 6.3 and is about 8 ps wide, which is a

potential error amounting to approximately two percent for the sand in

this example. Conceptually, a stiffer material will have a shorter travel

time and the "arrival window" will constitute a larger percentage of that

travel time. However, the author has observed that as a material
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becomes stiffer, Poisson's ratio decreases and the relative size of the

"arrival window" decreases. The exception to this is a material which has

high Poisson's ratio (greater than 0.48). This material will have a

relatively high constrained velocity, regardless of its stiffness, and the

"arrival window" constitutes a larger percentage of the travel time. In

such a case even the precision of the measurement (typically ±0.5 I.s)

will constitute a larger proportional error.

It remains a straightforward step now to determine the error in the

constrained velocity and subsequently the constrained modulus. The

example listed in Table 6.1 suggests the ultimate error in the constrained

modulus is on the order of three percent, low for typical geotechnical

measurements.

6.3 Determining the Shear Modulus Using an

Independent Shear Pulse Test

6.3.1 Conducting the Shear Pulse Test

To conduct a shear pulse test to find the shear wave velocity in a

specimen, the function generator and digital recording oscilloscope are

used with a tapping device which is set up as shown in Figs. 5.7 and 5.9.

The configuration of the specimen and the appropriate accelerometers
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used for the test are shown in Fig. 6.5. The two horizontal

accelerometers at the top and the horizontal accelerometer attached to

the side of the base are connected to separate channels of the

oscilloscope. The function generator is connected through a rectifier

circuit to a variable amplifier/power supply and set to produce a 5.0-volt

square wave at a frequency of 5.0 Hz. The rectifier acts to chop the

negative half of the square wave, allowing only the positive voltage steps

of the square wave to the amplifier. The amplifier is set to amplify the

input signal 2 to 3 times and is connected, via an off-on switch, to the

tapping device. The tapping device is made of a 0.125-inch diameter

stainless steel rod mounted on a solenoid that was salvaged from an 8-

track tape player. When the switch is closed, the positive voltage signal

activates the solenoid and drives the rod against the side of the base

pedestal. A small piece of steel is glued to the side of the base to protect

its surface.

The oscilloscope is set to trigger on the signal produced by the

horizontal accelerometer attached to the base next to where the tapper

strikes. The oscilloscope is set to average 64 measurements and then

stop. A direct copy of the oscilloscope screen is provided as an example

in Fig. 6.6. Displayed in Fig. 6.6 are the responses of the base and two

top accelerometers with the top accelerometer opposite the tapper being

highlighted (darkened in the figure). After the test is complete, each

waveform is stored internally in the oscilloscope and the screen is

cleared. The stored waveforms are recalled, and using zoom and
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amplification functions, the waveforms are manipulated and expanded

for easier examination. The travel time, ts, for the shear wave arrival is

determined using the cursor functions. However, idontification of the

shear wav9 arrival at the top accelerometers is less straight forward than

for the P-wave arrival and is discussed further in the next subsection.

The length of the sample, L, is determined using the initial

measured length, adjusted for any changes determined from

measurements using the proximit.rs as was described in the previous

section for the axial pulse test. As before, the time delay, td, between the

accelerometers was determined in a separate test without the soil

sample present. The values of these delays typically ranged between 35

and 45 jiS. A value of 41 lis was measured for this accelerometer

configuration and is used in this example. The shear velocity, Vs, is then

V (tstd) (6.7)

For the loo'-e sand in Fig. 6.6, L = 0.2338 ft, and the resulting shear wave

velocity is 790 fps. The shear modulus, G, then follows from

G = pVs 2  (8.8)

where p is the sample mass density.
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Several assumptions have been mado in the process of

conducting the shear wave pulse test. These assumptions include clear

identification of the shear wave arrival and that only small strains occur in

the sample. Each of these is addressed separately in the following

paragraphs.

6.3.2 Identifying the Shear Wave Arrival

The shear wave is not the fastest travelling wave in the specimer,

Consequently, its arrival at a receiver is often masked by the arrival of the

dilatational wave. Also complicating this case is the presence of near-

field shear waves, which are commonly observed when the receiver is

less than two wavelengths from the source. Sanchez-Salinero (1987)

showed that the near-field shear way-' would travel at the P-wave

velocity, further complicating identification of the far-field shear wave

when making measurements close to the source.

To assist in identifying the shear wave ,irrival, each accelerometer

used for this test was glued to the same base and subjected to an

upward pulse. The relative orientation of the signal outpit is shown in

Fig. 6.7. Using the accelerometer's base as the bottom reference an

upward motic,, results initially in a positive signal for the top

accelerometers and a negative signal for the base accelerometers. This

suggests that, for the shear pulse test, the top horizontal accelerometer

opposing the source should experience a significant positive signal
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corresponding to the main shear wave arrival. Figure 6.8 illustrates how

the shear wave arrival was selected for a typical test. The second top

accelerometer provides a check and aids in arrival identification. The

travel time recorded was the average of the two separate measurements.

The P-wave and/or near-field shear wave arrival can also be seen

at the top accelerometers, although this arrival can only be identified by

magnifying the vertical scale of the recorded signal many more times

than is necessary for the shear wave measurement. This has been done

for the example and the P-wave arrival is also annotated in Fig. 6.8.

6.3.3 Assumption of Small Strains in the Shear
Pulse Test

The strain level at the top and bottom of the specimen is computed

in a manner analogous to that developed in , tion 6.2.4. It is again

noted that it is inherently assumed that the maximum acceleration occurs

at, or just after, the first arrival and the impact of wave reflections and their

coincidences is ignored. Then, assuming one-dimensional wave

propagation, the shear strain, y, at maximum horizontal particle velocity is

computed from

max = Umax (6.9)
j)Vs
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An examination of Fig. 6.6 shows at the top and bottom of the sample the

maximum accelerations were 1.2 and 3.7 g's and the corresponding

frequencies were 3,333 and 40,000 Hz, respectively. The shear wave

velocity for this example was 790 fps, and the strains were computed to

be 2.3 x 10-4 percent at the top and 5.9 x 10-5 percent at the bottom.

6.3.4 Determining the Error in the Shear Modulus

Table 6.2 is a summary of the approximate errors and their

propagation through the calculation of the independently measured

shear modulus. The values in Table 6.2 are approximated for the loose

sand confined isotropically that is used as an example in this and the

following chapter. Comments pertaining to the errors in the sample

dimensions and properties are included in Section 6.2.5.1 and are not

repeated here.

The principal source of error in the measurement of the shear

modulus is determining the arrival of the main (far-field) shear motion at

the top horizontal accelerometers. The "arrival window" is illustrated in

Fig. 6.8. An examination of the time record for the top accelerometer

shows motion occurring well in advance of the larger far-field shear

wave. Consequently, its arrival is obscured and could occur within a

window 80 - 120 gIs wide. If the middle point in the window is chosen,

and an average error is assumed of half the maximum window width,
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Table 6.2. Propagation of Errors in the Shear Pulse Test for a Loose

Sand at 6o = 16.0 psi (IS0217 Test)

Parameter .ai Error Unit

Length, L 6.37 ± 0.01 in 0.2%

Diameter, D 2.81 ± 0.01 in 0.1%
Volume, V 39.41 ± 0.12 in3  0.3%

Weight, W 983.0 ± 1.0 gram 0.1%
Unit Weight, y 95.10 ± 0.3 pcf 0.3%

Added Mass, Wm 485.5 ± 0.1 gram 0.02%

Travel Time, ts 713.5 ± 60 Igs

Time Delay, td 41.0 ± 1.0 gs

Net Travel Time, (ts-td) 672.5 ± 57 p.s 8.5%

Shear Wave Velocity, Vs 789.9 ± 67.1 fps 8.5%

Shear Modulus, Gm 1841970 ± 222880 psf 12.1%

12790 ± 1550 psi 12.1%

say ±60 p S, then the error for the shear wave velocity of the loose sand a,

16 psi confining pressure will be 8.5 percent. This results in a 12% error

in the shear modulus.

This large an error is unacceptable and makes it difficult to draw

any useful conclusions from the shear pulse test as it is currently

configured in the MTD. To be useful, a shear wave source which does

not generate so large a P-wave will need to be developed.
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6.4 Summary

Two of the three tests conducted in the Multi-Moduli Testing

Device (MTD) are the axial and shear pulse tests which measure the

dilatational and shear wave velocities that are used to calculate the

constrained and shear modulus, respectively.

In the axial pulse test, the piezoelectric shaker applies a step

function impulse to the base of the sample and the responses of the

bottom and top vertical accelerometers are recorded by the digital

recording oscilloscope. The travel time for the pulse is determined from

the two time records, adjusted for any delay, and the dilatational wave

velocity is computed from the sample length. The travel time is chosen

as the time interval between the first arrivals at each accelerometer. The

justification for picking the first arrival is based on the transient wave

propagation theory discussed in Chapter 3. When the solution for

transient motion in a rod (due to a sudden impact at the one end) is

plotted as a function of time, it shows that particle motion begins at about

the time corresponding to the theoretical arrival of the dilatational wave.

Calculations for an example test on a loose sand confined at 16 psi

showed that the maximum strains experienced by the sand were on the

order 1 x 10- 4 percent, or less. An examination of the errors in the axial

pulse test suggest the error in the constrained modulus should not

exceed three percent.
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In the shear pulse test, a mechanical tapping device strikes the

side of the base pedestal and the responses of the bottom and two top

horizontal accelerometers are recorded by the digital recording

oscilloscope. The travel time for the pulse is determined from the three

time records, adjusted for any delay, and the shear wave velocity is

computed from the sample length. The travel time is determined by

observing the arrival of the polarized shear wave that corresponds to the

direction of impact. However, motions travelling at the faster P-wave

velocity obscure the shear wave arrival. This problem is likely due to the

nature of the source and the size of the sample. Consequently, the error

in the shear modulus is significantly greater than for the constrained

modulus, and may be as large as 15 percent. A new dynamic source is

needed which will generate a stronger shear wave that can be reversed.



Chapter Seven

Young's Modulus from Longitudinal Resonant Column Testing

7.1 Introduction

The use of resonant testing to determine the dynamic stiffness of

civil engineering materials is slowly gaining acceptance in practice. The

development of laboratory testing using dynamic techniques over the

past 30 years is discussed in Chapter 2. The American Society for

Testing and Materials has a formalized method, C215-85, to determine

dynamic moduli of concrete specimens using the fundamental

transverse, longitudinal and torsional frequencies.

The general procedure used in this research to measure multiple

longitudinal natural frequencies of a typical soil specimen and to

compute the elastic Young's modulus from those measured frequencies

as discussed in this chapter. Detailed test procedures are included in

Appendix F. A description of the test apparatus and equipment is

included in Chapter 5 and Appendix E. Theoretical development of the

equations used to backcalculate Young's modulus are contained in

Chapter 3 and Appendices A and B.

172
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7.2 Determining Young's Modulus of Soil Specimens

7.2.1 Conducting the Longitudinal Resonant Column Test

The arrangement of the MTD for conducting the longitudinal

resonant column test is illustrated in Fig. 7.1, and the equipment set up is

shown in Fig. 5.10. The base and top vertical accelerometers are

connected to channels I and 2 of the dynamic signal analyzer, and the

piezoelectric shaker is connected to the analyzer's internal function

generator. The dynamic signal analyzer is set to conduct an upward

frequency sweep with channel 1, the base accelerometer, used as the

reference channel for frequency and amplitude control.

Table 7.1 is a listing of some of the pertinent settings that were

used for the loose sand specimen used as an example in this chapter

and for the pulse tests described in Chapter 6. The analyzer can be set

to conduct the frequency sweep automatically, allowing the operator to

perform other functions while the test is progressing. Depending on the

properties of the test specimen, the operator may have to reset the

source level or the range of the top accelerometer to insure good

coherence between the accelerometer's signals. The settings in Table

7.1 were found to be appropriate for virtually all sand tests with

adjustments only required for extreme variations, high or low, in material

stiffness and damping. For all the tests on sand, loose or dense, the
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Table 7.1. Typical Settings for Dynamic Signal Analyzer for

Longitudinal Resonant Column Test on Sand.

Measurement Mode: Swept Sine - Linear Sweep

Auto Gain: on

RefChan Chan 1
Ref Level 15 mVpk

Source Limit < 2 Vpk
Average:

Integration Time 50.0 ms

# of Averages 8
Frequency:

Start 100 Hz

Stop 5 kHz
Resolution 6.12 Hz/Point

Source:

Sweep Up

Offset 0.0 Vpk

Input:

Chan 1 Auto Range Up

Chan 2 Auto Range Up

Chan 1 AC (Float) Coupling

Chan 2 AC (Float) Coupling
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settings in Table 7.1 were adequate for confining pressures ranging from

4 to 32 psi. Typically, the frequency range would have to be extended

above 5000 Hz for sand under higher confining pressures (64+ psi) or

stiffer materials such as polyvinylchloride and Portland cement concrete.

It also was common to have to increase the reference level (15 mv) for

highly damped materials such as the compacted clay and polyurethane

specimens.

The analyzer perforns a frequency sweep by driving the vibration

generator at a specific frequency and amplitude referenced to a

designated channel. In this example, the reference channel was the

base accelerometer and the reference level was 15 mv, which was about

0.1 g. (The accelerometer constant, after amplification, was 150mv/g.)

The source was also set to a maxinum of ±2.0 Volts peak to protect the

piezoelectric shaker which has an input limit at the power amplifier of

±3.0 Volts. The analyzer outputs a sine wave to the piezoelectric shaker

in order to attain the prescribed test frequency at the base accelerometer.

A typical test frequency range used for the natural soils was 100 to 5000

Hz, with a sweep consisting of 200 test frequencies. This resulted in a

resolution of 6.12 Hz between test points. At each frequency, the

analyzer took eight averages of the measured signals and then

computed the relative amplitude and phase of the signals received at the

two input channels. The analyzer could also display a variety of other

waveform functions, including the coherence between channels, the
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power spectrum of each channel, and the cross spectrum between the

channels.

In the longitudinal resonant column test, the phase of the

frequency spectrum is used to determine the natural frequencies of the

sample. Figure 7.2 is the amplitude, phase and coherence plot for a

longitudinal resonant column test on a loose sand (Dr = 26%) confined

isotropically at 16.0 psi. The top curve is the ratio of the amplitudes of

the top accelerometer to the bottom accelerometer in terms reduced to

actual acceleration using the appropriate accelerometer constants and

amplifier gains. The middle curve is the phase of the top accelerometer

relative to the bottom accelerometer and is displayed in a form which

wraps the plot between ±180 degrees. The bottom curve is the

coherence between the measured signals and is an indication of how

well the signals relate to one another. A value close to 1.0 is an

indication that the signals track each other well and the amplitude and

phase measurements should be good. Low coherence can be the result

of interference from other waves in the specimen, external noise and

vibrations, or motion too small to be detected by one, or both, of the

accelerometers. It is noted in Fig. 7.2 that the coherence is poor below

about 300 Hz, a limitation attributable to both the accelerometers

inability to sense, and the piezoelectric shaker's inability to generate, low

frequency motions.
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Fig. 7.2. Dynamic Signal Analyzer Record for Longitudinal
Resonant Column Test on a Loose Sand Under 16 psi

Confining Pressure (IS02T7 test).
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The natural frequency of each mode of vibration is determined

from the phase diagram because the phase is not affected by damping in

the material. It was shown in Chapter 3 that the natural frequencies

occur at ±90 degrees of phase. The frequency of each mode was

determined by linearly interpolating between the two closest points on

each side of the corresponding 90 degree phase point. It was felt that

this approach produced a sufficiently accurate estimate of the natural

frequency. If greater accuracy were required, a finer resolL n frequency

sweep would be conducted in the vicinity of the phase shift. The

frequency was interpolated and recorded to the nearest 0.1 Hz, which

amounts to an error of approximately ±0.05 percent at the lowest natural

frequency in this example. The natural frequencies measured for the first

four modes in the example test are listed in the second column of

Table 7.2.

7.2.2 Determining Young's Modulus from

Longitudinal Resonant Frequencies.

It was shown in Chapter 3 that an undamped finite rod subjected

to a steady-state sinusoidal displacement at one end and having an

added mass at the other, would resonate in one-dimensional motion at

frequencies governed by the equation
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Wm = On tan n , n = 1, 2, 3,... (7.1)Wm

where

onL 2xfnL
CB n=1,2,3,... (7.2)

and where

Ws= weight of the specimen

Wm = weight of added mass,

L = length of specimen,

CB = bar wave velocity,

0-n = resonant circular frequency in rad/sec, and

fn = resonant frequency in cycles/sec.

Therefore, for any given Ws, Win, L, and CB, the value of fn could be

predicted by solving the transcendental equation. This is easily

accomplished numerically by computer. Alternatively, if Ws, Win, L and fn

are known, then CB can be calculated. This has been done for the

example test and the results listed in the third column of Table 7.2 and

denoted as Cn. It is immediately obvious that the values calculated for

Cn are not equal to each other as would be expected for one-

dimensional wave propagation in a linearly elastic, finite rod. Therefore,

an additional adjustment is required.
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It was shown in Chapter 3 and Appendix B that dispersion occurs

in an infinite rod subjected to a steady-state motion. It was also shown

that the velocity of propagation is a function of the radius and stiffness

properties of the rod and the frequency of the driving motion. Figure 7.3

is a plot of the dimensionless velocity ratio (the ratio of the phase velocity,

C, to the theoretical bar velocity, CB), as a function of the dimensionless

wavelength, 2a/X, for various values of Poisson's ratios. Only the first

longitudinal mode of propagation is shown. Thus, for any given radius, a,

wavelength, X, and Poisson's ratio, v, three-dimensional theory predicts

the dimensionless velocity ratio. Finally, if the phase velocity is known,

then the theoretical bar velocity can be computed from the dimensionless

velocity ratio.

Using this approach for the example test on the loose sand, the

wavelength can be determined for each longitudinal mode of

propagation using a variation of Eq. 7.2. By noting fX = C, and

substituting Cn for CB, the wavelength for each mode can be computed

directly from

2 rL
Xn = 2L (7.3)On

Then, assuming a value for Poisson's ratio, a dimensionless velocity ratio

can be determined for each natural frequency using the curves in Fig.

7.3. Finally, by assuming that the velocity computed from the first
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Fig. 7.3. Dimensionless Velocity Ratio as a Function of the

Dimensionless Wavelength For Various Poisson's Ratios
(Fundamental Mode Only).

approximation is the phase velocity, the bar velocity is calculated. The

fourth through seventh columns of Table 7.2 reflect these steps. Here the

values for Cn/CB were computed numerically using an assumed value of

Poisson's ratio equal to 0.27. The bar velocity computed in this manner

is listed in the seventh column of Table 7.2 and is denoted as Vc to reflect

the fact it is a measured quantity.
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The final step is to compute Young's modulus using the

relationship developed earlier for one-dimensional motion

E = pVc2  (7.4)

where p, the mass density, is taken from the appropriate measurements.

Consequently, there will be a different value of En for each longitudinal

mode of propagation, n. Which value of En is the most correct is

discussed in Section 7.3. The values for Young's modulus computed for

the loose sand in the test example are shown in the eighth column of

Table 7.2.

7.2.3 Computing Poisson's Ratio and the Shear
Modulus

The adjustment to the phase velocity using the dimensionless

velocity ratio requires a value for Poisson's ratio. In the earlier example,

a Poisson's ratio of 0.27 was assumed. An examination of Fig. 7.3 shows

that, for low and high values of the dimensionless wave numbe,,r, an error

in the estimate of Poisson's ratio should have only a small impact on the

computed value of the bar velocity, Vc. Nevertheless, with the bar wave

velocity from this test and the constrained wave velocity from the axial



185

pulse test described in Chapter 6, a possibly more accurate value of

Poisson's ratio is available.

Poisson's ratio can be computed directly using the results from the

axial pulse test. From linear elastic theory it can be shown

VNB2 + 4B - B (75)

where

B=M - E VD2 -Vc 2  (7.6)2M - 2Vp2

v = Poisson's ratio,

M = constrained modulus from axial pulse test,

E = Young's modulus from longitudinal resonant

column test,

VP = constrained velocity measured in pulse test,

and

Vc = bar velocity computed from longitudinal

resonant column test.

The computed value of Poisson's ratio can now be compared to that

originally assumed and, if different, the computed value can be used to

recompute the value of the bar wave velocity. By iteration in this manner

the appropriate value of Poisson's ratio and the dimensionless velocity
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ratio is quickly reached. This process is easily incorporated in a

computer program and this has been done for all the laboratory test

series. A copy of the source listing for the data reduction program is

included in Appendix F. Figure 7.4 is a copy of the individual test printout

for the loose sand at 16.0 psi that is used in this example (IS02T7 test).

The shear wave velocity can now be calculated assuming

isotropic linear elasticity from either

Vs = V; (7.7)

or

.= (1-2v)
2(1 v)(7.8)

Finally, the shear modulus, G, follows from

G = pVs2  (7.9)

where p is the sample mass density. As there was a different value of the

bar velocity for each mode, there will also be a different value of the

shear wave velocity and shear modulus backcalculated for each mode.
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ISO2 TEST SERIES, 3-4 MAY 90 TEST NO. 7
TIME(hr): 6.50

STRESSES:
AXIAL- 16.16 psi
HORIZ.= 15.99 psi
MEAN= 16.05
KO- 1.01

SAMPLE PROPERTIES:
HEIGHT (in): 6.3695
DIAMETER (in): 2.8077
WEIGHT (Ib): 2.1675
VOLUME (cf): .0228
UNIT WT. (pcf): 94.98
SPECIFC GRAVITY: 2.670
WATER CONTENT: .001510
VOID RATIO: .7577
ADDED MASS (Ib): 1.0703

MODE fr(Hz) C(fps) Cb(fps) Cp(fps) POI. RAT. Cs(fps)
1 403.6 1245.6 1247.3 1462.2 .3072 771.4
2 1397.7 1277.7 1295.9 1462.2 .2783 810.5
3 2438.9 1235.8 1310.4 1462.2 .2684 822.7
4 3259.5 1128.6 1338.0 1462.2 .2474 847.1

MODULI (psf):
YOUNGS CONSTRAINED SHEAR

1 4593047. 6312600. 1756849.
2 4958149. 6312600. 1939411.
3 5069600. 6312600. 1998447.
4 5285589. 6312600. 2118600.

MODULI (psi):
YOUNGS CONSTRAINED SHEAR

1 31896. 43838. 12200.
2 34432. 43838. 13468.
3 35206. 43838. 13878.
4 36705. 43838. 14713.

INDEPENDENT SHEAR WAVE VELOCITY: 789.9 fps
INDEPENDENT SHEAR MODULUS: 1841972. psf
INDEPENDENT SHEAR MODULUS: 12791. psi

Fig. 7.4. Individual Test Printout for IS02T7 Test on a Loose Sand
Under 16 psi Confining Pressure.
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7.2.4 The Assumption of Small Strains in the
Longitudinal Resonant Column Test

It is important to determine that the strains experienced during this

test are small enough so that the small-strain assumption remains valid.

The process of computing the maximum strain in the specimen is

analogous to that described in Section 6.2.4. However, the maximum

acceleration and frequency are now known fairly accurately at each

resonant mode. The acceleration at the bottom is 0.1 g, and is known

because it is preset at the beginning of the test. An examination of Fig.

7.2 shows the maximum amplitude occurs at the first resonant mode and

the acceleration at the top can be computed from the equation defining

the amplification

Amplification (dB) = 20 loglo.'. (7.10)
[ Wbase)

The amplification at the first resonant mode is approximately 40 dB, so

the corresponding acceleration at the top is approximately 10.0 g's. The

maximum strain at the top and bottom can now be computed using Eq.

6.5, the first natural frequency of 403.6 Hertz and the approximate bar

velocity, Vc = 1250 fps. The resulting axial strains are 1.0 x 10-4 percent

and 1 x 10-2 percent at the bottom and top, respectively.
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Table 7.3. Summary of Maximum Strains for Example Longitudinal
Resonant Column Test

Mode Natural Magnitude Base* Top
Freq., Hz dB Ezmax% £zmax%

1 403.6 40 1.0 x 10-4  1.0 x 10-2

2 1397.7 27 2.9 x 10-5  6.6 x 10-4

3 2438.9 15 1.7 x 105  9.4 x 10-5

4 3259.5 6 1.3 x 10-5  2.5 x 10-5

*Base acceleration set to 0.1 g's

A similar calculation can be conducted for the second, third, and

fourth resonant modes. The corresponding maximum strains are

summarized for each mode in Table 7.3. Note that except for the first

resonant mode, all the maximum strains are less than 1 x 10-3 percent,

the small-strain threshold for this sand.
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7.2.5 Measurement Errors in the Longitudinal
Resonant Column Test and Their Influence on

the Calculation of Young's Modulus

A summary of the approximate errors and their propagation

through the calculation of the Young's modulus for the loose sand used

in this example is presented in Table 7.4. Comm6nts pertaining to errors

in the sample dimensions and weight are included in Section 6.2.5.1.

The principal source of error in the computation of Young's

modulus is from the length measurement and the determination of the

natural frequency. The example in Table 7.4 suggests the computation

process only introduces an error in the Young's modulus that is on the

order of 1-2 percent. However, the study using the finite element model

that is described in Chapter 4 suggests the two-step reduction method

and the effect of the various test parameters will introduce errors which

may be attributable to the test method, the test apparatus and the data

reduction method. In particular, the parametric model study showed that

the potential error in backcalculating the correct bar velocity tends to

increase for the higher modes. However, that error never exceeded one

or two percent and normally remained below one percent for the first

three modes. Consequently, it is possible to conclude the error in

determining the Young's modulus will surely be less than five percent.

This is further substantiated by the comparison discussed in the next

section.
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Table 7.4. Propagation of Errors in the Longitudinal Resonant Column

Test (Values from 1st Mode of ISO2T7 Test)

Parameter QuErortUitsy

Error

Length, L 6.37 ± 0.01 in 0.2%

Diameter, D 2.81 ± 0.01 in 0.4%

Volume, V 39.41 ± 0.24 in 3  0.6%

Weight, W 983.0 ± 1.0 gram 0.1%

Unit Weight, y 95.10 ± 0.5 pcf 0.6%

Added Mass, Wm 485.5 ± 0.1 gram 0.02%

Natural Frequency, fn 403.6 ± 0.5 Hz 0.1%

Phase Velocity, C1  1245.6 ± 2.9 fps 0.2%

Wavelength, X1  37.03 ± 0.08 in 0.2%

Wave Ratio, 2a/X 0.0338 ± 0.0003 0.5%

Velocity Ratio, C/CB 0.9990 ± 0.0046 0.5%

Bar Velocity, Vc 1246.8 ± 6.1 fps 0.5%

Young's Modulus, E1  4595400 ± 42100 psf 0.9%

31915 ± 292 psi 0.9%
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7.3 Comparing the Frequency Response Measured in

the Laboratory to that Calculated by the Finite

Element Model

Figure 7.5 is the transfer function computed using the finite

element model described in Chapter 4. The input parameters for the

program runs were taken directly from the test results for the loose sand

used as an example in the preceding section. Two transfer functions are

shown in Fig. 7.5, one each corresponding to the moduli computed from

the first two natural frequencies found in the longitudinal resonant

column test. The Young's modulus and shear modulus (computed from

Eq. 7.9 using the measured constrained modulus) were used for the

input stiffnesses. The damping ratio was calculated from the first mode

noting the following from Fig. 4.10 for a single degree-of-freedom system

~ .. I =(7.10)
wbase)

where the left side of the equals sign represents the magnitude

(amplification ratio), and D is the damping ratio. Recall that for this

example, the magnitude of the first peak is approximately 40 dB, making

the respective damping ratio approximately 0.05, or 5 percent. Other

specimen parameters used for the input came directly from the laboratory

results as summarized in Fig. 7.4. Table 7.5 summarizes the bar



193

-0 Moe1

S 10 .. .......... .................. .....

300 10 100 2000 30 00 40 00 5000
Frequency - Hz

180 - ,___

go ---- -- --- i*

* Fr-qenc - Hz'

Stfns aaeesbsdo oe**

EeetdladStiffness arameters basedine onMden

the Laboratory in the IS02T7 Test.



194

Table 7.5. Comparison of Model Bar Velocities to Measured Bar
Velocities for Loose Sand (IS02T7)

Vc - fps

Mode 1 Mode 2 Mode 3 Mode 4
IS02T7 1247.3 1295.6 1309.5 1336.7
(Lab Test)
FEMI* 1248.7 1249.7 1250.5 1251.10.11%** -3.54% -4.51% -6.40%

FEM2 1297.3 1298.1 1298.7 1298.9
4.01% 0.19% -0.82% -2.83%

FEM3 1311.1 1311.9 1312.4 1312.65.12% 1.26% 0.22% -1.80%

FEM4 1338.4 1339.0 1341.5 1339.4F 7.30% 3.35% 2.44% 0.20%

FEM(n) represents program input corresponding to mode n from
IS02T7 test using En and Gn, where Gn is computed from M and En.

Percent difference from corresponding mode in IS02T7 test.

velocities determined in the lab and resulting from the finite element

model runs. It can be seen the best match for the lab data occurs when

the moduli from the second or third modes are used for input.

It is noted now, that the bar wave velocities for the second and

third mode are within one percent of each other, while the first mode is

about five percent lower. There are two possible explanations. The first

is that the strain level in the sand is above the small-strain range and a

lower modulus is being measured. It is suggested in Section 7.2.4 that

the axial strain at the top is on the order of I x 10-2 percent and, as can
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be seen in Fig. 8.10, the stiffness of the loose sand begins to decrease

when the axial strain is greater than 1 x 10-3 percent. The second

explanation considers the one-dimensional wave propagation

assumption which is made in the process of reducing the natural

frequencies to the bar wave velocity. As the frequency increases for the

higher modes of vibration, the wavelength becomes shorter with respect

to the diameter and the long bar assumption associated with one-

dimensional theory may no longer apply.

This comparison of laboratory and model results is important

because it supports the use of the second or third natural frequencies to

define the relationship between the various moduli and the stress state.

In virtually all the longitudinal column tests in the biaxial test series, the

first natural frequency was obscured by other resonances in the system.

Further, in the BIAX1, BIAX2 and BIAX3 test series, the second mode was

also obscured when the axial load was high (in tension or compression),

and only results from the third natural frequency could be relied on for

analysis. The BIAX4 and BIAX5 test series used a new dynamic isolation

top cap assembly, and the second, third, and fourth (where present),

natural frequencies were clearly identifiable.
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7.4 Summary

A longitudinal resonant column test is used in the Multi-Moduli

Testing Device (MTD) to measure the bar wave velocity of a specimen,

which is then used to calculate Young's modulus. A dynamic signal

analyzer is used to control the dynamic excitation and record and display

the response of the specimen. The analyzer drives the piezoelectric

shaker at the base of the sample at a specified frequency and measures

the relative amplitude and phase between the base and top vertical

accelerometers. A typical linear sweep for a test on sand consists of 200

different frequencies and covers a range between 100 and 5000 Hz

(resulting in a resolution of 6.12 Hz/point). The longitudinal natural

frequencies are determined at phase angles of ±90 degrees, in

accordance with the theoretical development for one-dimensional motion

in a finite rod described in Chapter 3.

The bar wave velocity of the specimen is determined from the

measured natural frequencies in a two-step reduction method. In the first

step, one-dimensional wave propagation is assumed and the phase

velocity corresponding to each natural frequency is computed. The bar

wave velocity is calculated in the second step by dividing the phase

velocities by a dimensionless velocity ratio that is determined from the

solution for the first longitudinal mode for three-dimensional wave

propagation in an infinite rod. The values of Young's modulus computed



197

from the bar wave velocity for each natural frequency typically compare

within live to ten percent.

The error in determining the Young's modulus from the

longitudinal resonant column should be less than five percent. Also, it

was shown that for the loose sand confined isotropically at 16 psi, that

except for the first resonant mode, all the strains experienced by the

specimen are less than 1 x 10-3 percent, the small-strain threshold for

this sand.

Finally, a comparison was made between the bar wave velocities

found in the MTD and the bar wave velocities determined using the finite

element program developed in Chapter 4 and input parameters from the

laboratory test on a loose sand. The comparison between the computed

measured responses suggests it is appropriate to use values for Young's

modulus that are computed from the second or third natural frequencies

as well as the first. This is important because it was not always possible

to observe the first natural frequency of the specimen.



Chapter Eight

Test Materials

8.1 Introduction

In the course of developing and evaluating the Multi-Moduli

Testing Device (MTD), a variety of natural and man-made materials were

tested. The list of man-made materials included plastics, such as

polyurethane, polyvinylch loride and polyethylene, and Portland cement

concrete. The synthetic materials provided a distinct advantage in that

their stiffness did not change from test to test and they were easy to

handle and set up. Further, the synthetic materials were available in a

wide range of stiffnesses, allowing samples to be selected which

approximate natural soils or other civil engineering materials. Most

significantly, these specimens could be used repeatedly and could be

tested in other laboratory test equipment using different methods such as

used in cyclic triaxial (resilient modulus), torsional resonant column and

torsional shear tests. Each of these materials were cast or formed in

cylindrical shapes of various sizes and length-to-diameter ratios.

Each of the man-made materials is described in this chapter.

Wherever available, their stiffness properties determined by other

laboratory tests are presented. The results from the axial and shear

pulse tests and the longitudinal resonant column tests are summarized in

198
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this chapter when they are available. It is important to note that many

tests on these synthetic materials were conducted in the early stages of

the MTD's development and some results are incomplete or must be

presented with qualifications.

A compacted clay and a washed mortar sand were the two natural

materials used for the bulk of the laboratory tests after the MTD was

completely developed. Both soils are being, or have been, used for other

experimental investigations at The University of Texas at Austin. The

results from the few tests conducted on the compacted clay are

presented in this chapter along with results from torsional shear, torsional

resonant column, and cyclic triaxial tests on the same samples. Tests on

the washed mortar sand are by far the most extensive of the research

study and the results are discussed in Chapters 9 and 10. However, the

sand is described in this chapter and the results from torsional shear and

torsional resonant column tests conducted on identically prepared

samples are included.

8.2. Synthetic Calibration Specimens

8.2.1 Polyurethane Specimens

Stokoe, et al (1990) performed extensive tests on synthetic

calibration specimens made of a two-component urethane elastomer
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resin. Their tests were used for calibrating and comparing cyclic

equipment used for resilient modulus testing. Three different urethane

mixtures, Conathane® TU-700, TU-900, and TU-960 were used to

construct cylindrical specimens. These three polyurethane specimens

were tested in static axial compression, cyclic torsional shear and

dynamic torsional resonant column tests. Their tests showed that the

urethanes could be considered linear, viscoelastic materials with

stiffness characteristics which were independent of confining pressure,

strain amplitude and stress history. However, the tests showed that the

urethane stiffness was dependent on loading frequency and specimen

temperature. Therefore, any comparison of stiffness values determined

by different test methods must make adjustments for these two effects.

Figure 8.1 is a plot of the stiffness variation of each urethane

specimen as a function of strain amplitude and frequency from each of

the dynamic tests. Young's modulus from the cyclic torsional shear and

torsional resonant column tests was computed using Poisson's ratio from

static tests. Also shown in Fig. 8.1 are the values for Young's modulus of

the TU-700 and TU-900 measured in the MTD. Values of Young's

modulus corresponding to each of the measured modes (except the first

which was difficult to measure) are shown. It appears that the values of

Young's modulus measured in the MTD fit well if one extends the trend

for the stiffness to increase with frequency. Table 8.1 is a summary of test

results for tests on several polyurethanes, including two additional

specimens tested toward the end of this research study.
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8.2.2 Polyvinylchlodde (PVC) Specimens

A polyvinylchlonde plastic, commonly referred to as PVC, was

tested in a variety of length-to-diameter (LID) ratios. A 4-inch diameter

solid cylindrical rod of PVC industrial stock which was 24 inches long

was purchased to make calibration specimens. Tests were performed on

three PVC specimens, all of which came from the same piece of stock.

The PVC specimens were 4-inch diameter by 24-inch long, 4-inch

diameter by 12-inch long, and 2.8-inch ciameter by 6-inch and long,

which resulted in length-to-diameter ratios of about 6, 3, and 2 to 1,

respectively.

Figure 8.2 illustrates the transfer function measured for the longest

PVC specimen. The effect of the length on the transfer function is clearly

evident by the presence of a large number of resonant modes. Table 8.2

summarizes the results from tests on all three PVC specimens. It is

important to note that two of the samples have base ratios of 0.475 (base

ratio = area of base pedestal/area of sample base). Although these two

specimens show Young's moduli that are noticeably lower, it was shown

in Chapter 4 that a base ratio of about 0.5 would result in a measured

velocity for the first mode that is 10 percent lower than that measured for

a base ratio of 1.0. Consequently, the Young's modulus would be on the

order of 20 percent lower, approximately what is seen in Table 8.2.
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8.2.3 Ultra-High Molecular Weight (UHMW)

Polyethylene Specimens

An ultra-high molecular weight (UHMW) polyethylene was tested

in a variety of length-to-diameter (LID) ratios. A 4-inch diameter solid

cylindrical rod of UHMW industrial stock 24 inches long was also

purchased to make calibration specimens. Tests were performed on

three UHMW specimens, all of which came from the same pi. "- )f stock.

The UHMW specimens were 4-inch diameter by 24-inch long, 4-inch

diameter by 12-inch long, and 2.8-inch diameter by 6-inch long, which

resulted in length-to-diameter ratios of about 6, 3, and 2 to 1,

respectively.

Table 8.3 lists the results from tests conducted on the three

different sized UHMW samples. Again it is noted that two samples have

base ratios of 0.463 and consequently their computed values of the

Young's modulus are 20 to 25 percent lower than for the specimen with a

base ratio equal to 1.0.
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8.2.4 Portland Cement Concrete (PCC)

A series of axial pulse and longitudinal resonant column tests

were conducted on a 3-inch diameter by 6-inch long cylinder of curing

concrete. These tests were conducted primarily out of the curiosity of the

writer at an early stage in the development of the MTD. However, the

results are described here because they illustrate its unique capabilities.

The PCC sample was rodded into a 3-inch by 6-inch, thin-walled

PVC mold, approximately one hour after it was initially mixed. The

concrete was first sifted through a 3/8 inch sieve before rodding into the

mold. A 2.9 inch diameter hole was precut in the bottom of the mold and

the bottom was then taped back into the hole before the concrete was

rodded into the mold. The bottom was carefully removed about five

hours after rodding and the concrete cylinder (still in the mold) was set

directly on the base pedestal of the MTD.

Axial pulse and longitudinal resonant column tests were

conducted every 30 or 60 minutes for the next six hours and then less

frequently over the next two days. The plastic mold was removed 48

hours after the specimen was prepared and tests continued daily for five

more days.

Figure 8.3 shows the constrained and Young's modulus as a

function of time from when the concrete specimen was prepared. Only

one natural frequency was measured for each test so only one value of

Young's modulus is reported. The shear modulus was backcalculated
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Fig. 8.3. Constrained, Young's and Backcalculated Shear Modulus

of PCC as a Function of Curing Time.

from the constrained and Young's modulus assuming the specimen's

properties are isotropic. Figure 8.4 shows the change in the Poisson's

ratio as a function of time from specimen preparation. Both figures

clearly illustrate the strength gain as the concrete cures. It is

conceivable, with slight modification to the test setup, that strength

measurements could be made from as early as one hour after sample

preparation.
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determined from M and E).
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8.3 Soil Specimens

Two soils, a washed mortar sand and a medium plasticity,

compacted clay were the focus of the laboratory investigation. Both soils

have been used extensively in experimental investigations at The

University of Texas at Austin.

8.3.1 Compacted Clay

A medium plasticity, compacted clay, derived trom a surficial

subsoil at a local highway construction site, is being tested extensively at

The University of Texas at Austin as part of a research program

sponsored by the Texas State Department of Highways and Public

Transportation (TSDHPT). Compacted specimens are being tested in

cyclic compression, torsional shear and torsional resonance. It was

decided to test the clay using the tests in the MTD in order to provide a

side-by-side comparison.

The clay is classified as a CH (LL = 56, PI = 27) in the Unified

Classification system and is an A-7-6 soil under the AASHTO

classification system. One hundred percent of the material passes the

#10 sieve, 93.6 percent passes the #40 sieve and 87.3 percent passes

the #200 sieve. The clay was compacted in accordance with AASHTO T-

99 specifications at moisture contents dry of, wet of, and near the

optimum moisture content. The optimum moisture content was about 19
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percent and the samples tested had moisture contents of 13, 19, 28 and

39 percent. All the clay samples were approximately 2.8 inches in

diameter and 5.6 inches long. Cyclic triaxial testing was conducted at

one and six days following compaction, torsional shear and resonant

column testing was performed at two and six days following compaction

and longitudinal resonant column and pulse testing was performed

approximately five days following compaction.

Figure 8.5 is the transfer function measured for one clay specimen.

It is immediately apparent that the clay has much higher damping than

that observed in the loose sand used as an example in Chapter 7. Table

8.4 summarizes the results for the clay specimens from the tests

conducted in the MTD. The trend in measured stiff nesses matches that

expected for a compacted clay specimen. As the moisture content

decreases from wet of optimum, the stiffness increases to a maximum at

the optimum water content and then decreases. It can also be noted in

Table 8.4 that the Poisson's ratio steadily decreases as the water content

decreases.

The clay specimens were also tested using cyclic triaxial, torsional

shear and torsional resonant column. The torsional shear and resonant

column tests showed that the stiffness of the clay was both frequency-

and strain-dependent. Consequently, any comparison of the test results

will have to take this into account. Torsional shear and resonant column
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test results showed that the frequency dependency of Sample #3

amounted to a six percent gain per log cycle of frequency. Figure 8.6

plots the corrected values of Young's modulus for Sample #3 as a

function of axial strain amplitude. The values in Fig. 8.6 have been

normalized to a frequency of 10 Hz, the frequency at which the cyclic

triaxial tests were conducted. The shear modulus and shear strain

values determined by torsional shear and torsional resonant column

tests have been converted to Young's modulus and axial strain using the

Poisson's ratio calculated from tests in the MTD. The result for Young's

modulus determined using the longitudinal resonant column is shown

with an assumed strain amp!itude of 1.0 x 10.6 (1 x 10-4 percent) and was

normalized to 10 Hz (from f2 - 734 Hz) and then increased 10 percent to

account for aging that was exhibited by this clay.

The tests on the compacted clay using the various devices

highlighted two problems which the researcher has to consider. The first

was the integrity of the test specimen. The quality of the compacted clay

specimens varied significantly with water content. Clay specimens

compacted dry of optimum had lateral discontinuities and tended to ravel.

This raises the question of whether the specimen can still be treated as a

continuum. Any dynamic test method relies heavily on the assumption

that the specimen is contiguous and internal flaws will tend to

contaminate the test data. The second problem involves the impact of

the end conditions on the observed stiffness. For particularly stiff
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Fig. 8.6. Comparison of Young's Moduli for Compacted Clay
Sample #3 (Wc = 39%) Determined by Cyclic Triaxial,
Torsional Shear, and Torsional Resonant Column Tests at
Six Days, at 6.0 psi Confining Pressure, and Normalized

at 10 Hz. (After Pezo et al, 1990)
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materials, the continuity between the specimen and the end caps has to

be ensured. This is particularly important for torsional tests. The writer

believes that one inherent strength of the longitudinal resonant column

and axial pulse tests is that, as long as the strains are kept small and the

contact between the specimen and base is uniformly continuous, the

susceptibility of the measured stiffness to horizontal slippage at the ends

is limited. As was shown by the analytical study described in Chapter 4,

the horizontal fixity will have only a minor effect on the natural

frequencies of the specimen, and that effect is confined to the higher

modes.

8.3.2 Washed Mortar Sand

Washed mortar sand has been used for small- and large-scale

laboratory wave propagation tests over the past decade (Stokoe et al,

1980; Knox et al, 1982, Allen and Stokoe, 1982; Lee and Stokoe 1986;

and Ni, 1987). The sand is medium to fine with a subangular to

subrounded grain shape. It is uniformly graded with a mean grain

diameter, D50, equal to about 0.35 mm and less than 1% passes the

#200 sieve (0.074 mm). The specific gravity of the sand is 2.67. Rix

(1984) performed sieve analyses during the course of his experiments

and showed that the gradation was not significantly altered after

repeated sample preparation using a simple raining process. The sand

has a maximum dry density of 106.6 pcf and a minimum dry density of



218

90.6 pcf (as determined by ASTM D2049-69). The corresponding

minimum and maximum void ratios are 0.563 and 0.839, respectively.

Figure 8.7 shows the average grain size distribution for the sand. A

summary of soil characteristics and properties are presented in Table

8.5.

The washed mortar sand was recently tested using cyclic triaxial,

torsional shear and torsional resonant column methods. The sand

samples for these tests were prepared using the multiple sieve

pluviating (MSP) device developed for this research and described in

Chapter 5. Consequently, the loose and dense sand samples had

approximately the same structure and void ratio as inose specimens

tested in the MTD. Figure 8.8 shows the shear modulus measured in

torsional shear and resonant column tests on loose sand and dense

sand.

The shear moduli and shear strains from the torsional shear and

torsional resonant column tests were converted to Young's moduli and

axial strains using Poisson's ratio values determined at comparable

confining pressures (see Fig. 9.8) in the MTD. The Young's moduli are

plotted versus axial strain in Fig. 8.9 along with the values for Young's

moduli calculated using the log E - log d- relationship and stiffness

coefficnt3 determined in Chapter 9. It can be seen that there is

reasonably good agreement between the values, with differences lesp

than 10 percent.
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Table 8.5. Summary of Soil Characteristics and Properties of Washed

Mortar Sand.(From Rix, 1984).

Soil Type: Washed Mortar Sand

Unified Soil Classification SP

Mean Grain Diameter, D50  0.35 mm

Percent Passing #200 Sieve < 1 %

Specific Gravity 2.67

Maximum Dry Density 106.6 pcf

Minimum Dry Density 90.6 pcf

Maximum Void Ratio 0.839

Minimum Void Ratio 0.563

Grain Shape subangular to subrounded

Relative Density, % Angle of Internal Friction,

5.7 34.5

10.2 34.5

12.3 36.5

17.5 37.2

22.4 38.5

114.0 44.0
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8.4 Summary

A variety of natural and man-made materials were tested in the

course of developing the Multi-Moduli Testing Device (MTD). The man-

made materials that were tested included several plastic specimens

(polyurethane, polyvinylchloride and polyethylene) and Portland

cement concrete. The plastic specimens provided the following

advantages: (1) a range of stiffnesses similar to soils and other civil

engineering materials, (2) the capability for repeated use in the MTD

and other laboratory test equipment, and (3) ease in test preparation

and set up.

Tests on the plastic specimens were used to illustrated how well

the moduli measured in the MTD compared with those measured by

torsional shear and torsional resonant column devices. The single test

on curing Portland cement concrete showed the versatility of the MTD

to measure the stiffness of a broad range of materials.

Two natural soils were tested in the MTD, a medium plasticity,

compacted clay, and an uncemented, dry sand. The compacted clay

was also tested in cyclic triaxial, torsional shear and torsional resonant

column devices. After making adjustments for the effect of frequency

and aging, the Young's modulus determined by each small-strain

device compared within two percent.

The main thrust of this research involved testing dry sand

subjected to different stress states. Identically prepared sand samples
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were also tested under isotropic loading using torsional shear and

torsional resonant column devices. Those tests showed that the sand

stiffness remained linear up to strains of about 1 x 10-3 percent.

Young's modulus was computed from the shear modulus using the

value for Poisson's ratio found in the MTD. The values for Young's

modulus determined in the MTD were computed at the corresponding

confining pressures using the log E - log do relationship determined in

Chapter 9.4. The Young's modulus values typically compared to within

ten percent.



Chapter Nine

Stiffness of Sand Under Isotropic Confinement

9.1 Introduction

Two series of tests were performed to determine the effect of the

simplest stress state on the constrained, Young's, and shear modulus of

a uniform, dry sand. The testing was performed to evaluate the effect of

isotropic confinement, which is essentially equal to the confining

pressure, on each of the moduli, and to compare these results with data

from earlier tests on the same sand. The test series also provided insight

into the effect of stress history and void ratio on the elastic moduli.

Finally, it was possible to evaluate how applicable was the assumption

that the sand behaved as an isotropic linear elastic material in these

tests.

This chapter deals exclusively with testing on an uncemented, air-

dried sand. However, a number of other materials were tested under

isotropic loading conditions. These included compacted clay specimens,

a variety of plastic specimens and Portland cement concrete. The results

from tests on these materials are summarized in Appendix G and are

discussed in Chapter 8.

225
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9.2 Testing Sequence and Stress-State

Two test series were conducted utilizing only the top cap and

accelerometers, i.e. the load cell, top cap frame, and axial loading piston

were not installed. The hole in the top plate through which the axial

loading piston normally passes was capped with a solid plate. Thus,

aside from the minor weight of the top cap assembly itself, the test

specimen was subjected to an isotropic state of stress. In an isotropic

stress state the major, intermediate, and minor principal stresses are

equal.

The isotropic stress state assumed for this case is illustrated in Fig.

9.1. For the purpose of discussion in this and the following chapters, the

vertical or axial stress will be labelled ov and the horizontal stress (which

is equal to the confining pressure) will be labelled 0Uh. The major,

intermediate and minor effective principal stresses will be labelled 01, 02,

and 0"3, respectively. In this case, 0Y2 = 03 = Cyh = Ocell and 0c1 = Ov = Oh =

acel. The weight of the top cap adds about 0.17 psi to the vertical stress

for the top cap and sample sized used in these tests. This equates to a

difference which ranges from 5.0 % to 0.3 %, respectively, as the

confining pressure increases from 4 to 64 psi.

One test series was conducted on a dense sand sample and the

other was conducted on a loose sand sample. These are denoted

hereafter as ISO1 and ISO2, respectively. Each test series was made up

of tests conducted at confining pressures of 4, 8, 16, 32, and 64 psi.
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G= Ucel1

Gh-- (h Ocei

01 = 02 03 = Ocell

Fig. 9. 1. Assumed Isotropic Stress-State for Tests on Sand
Specimens.
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Table 9.1. Summary of Loading Sequence for Dense Sand Specimen

(ISO1 Test Series).

Test # Void Axial Horizontal Ko Mean
Ratio Stress Stress Stress

e psi psi psi
1 0.594 4.13 3.96 1.04 4.02
2 0.594 8.17 7.99 1.02 8.05
3 0.594 16.17 16.00 1.01 16.06

4 0.593 32.18 32.01 1.01 32.07
5 0.592 64.16 63.98 1.00 64.04

6 0.593 32.18 32.00 1.01 32.06
7 0.593 16.17 16.00 1.01 16.06

8 0.594 8.17 7.99 1.02 8.05

9 0.594 4.15 3.98 1.04 4.04

10 0.594 8.19 8.02 1.02 8.07
11 0.593 16.18 16.01 1.01 16.06

12 0.593 32.15 31.97 1.01 32.03

13 0.592 64.17 63.99 1.00 64.05
14 0.593 32.18 32.00 1.01 32.06

15 0.593 16.18 16.00 1.01 16.06
16 0.594 8.18 8.01 1.02 8.07

17 0.594 4.17 4.00 1.04 4.06

18 0.594 16.18 16.01 1.01 16.06

19 0.592 64.14 63.97 1.00 64.03

20 0.593 16.18 16.01 1.01 16.07

21 0.594 4.21 4.04 1.04 4.09

22 0.592 64.15 63.98 1.00 64.04

23 0.594 4.20 4.03 1.04 4.09

Average
Void Ratio = 0.593
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Table 9.2. Summary of Loading Sequence for Loose Sand Specimen

(IS02 Test Series).

Test # Void Axial Horizontal Ko Mean
Ratio Stress Stress Stress

e psi psi psi
1 0.760 4.18 4.01 1.04 4.06
2 0.759 8.19 8.01 1.02 8.07
3 0.759 16.16 15.99 1.01 16.05
4 0.757 32.18 32.00 1.01 32.06
5 0.756 64.14 63.97 1.00 64.02
6 0.757 32.18 32.00 1.01 32.06
7 0.758 16.16 15.99 1.01 16.05
8 0.758 8.18 8.01 1.02 8.07
9 0.759 4.18 4.01 1.04 4.07
10 0.758 16.17 16.00 1.01 16.05
11 0.756 64.17 64.00 1.00 64.05
12 0.758 16.17 16.00 1.01 16.05
13 0.759 4.18 4.01 1.04 4.06

Ave rage
Void Ratio = 0.758

Axial pulse, shear pulse and longitudinal resonant column tests were

conducted at each pressure step. The two test series are summarized in

Table 9.1 and Table 9.2. The IS01 test series contained 23 test steps in

four load and unload cycles. The IS02 test series contained 13 test

steps in two load and unload cycles.
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9.3 Constrained Modulus of Sand Under Isotropic

Confinement

The values of constrained modulus measured for each test series

are plotted versus the mean effective stress in Fig. 9.2. It is immediately

apparent that the log M - log ffo relationship is different for the first

loading cycle (tests 1 - 5) than for the subsequent unloading and

reloading cycles. In Fig. 9.2, the dashed lines represent the first load

cycle and the solid lines represent the first unload and subsequent

reloading cycles. The phenomena appears in both the dense and loose

sand. The sand exhibits a decrease in stiffness after the first load cycle

when unloaded to confining pressures below about 16 psi. This

behavior was also noted by Ni (1987) and Lee and Stokoe (1986) in

tests on this same sand.

There are several possible causes for this behavior. It could be

due to particle rearrangement, seating of the top and bottom caps or

complex and sensitive stress conditions in the vicinity of the base and top

caps. It also could be attributed to the sample preparation technique.

However, Lee and Stokoe prepared their test specimen in a large scale

triaxial cube (7 ft x 7 ft x 7 ft) by raining, whereas, Ni prepared torsional

resonant column samples using raining and an under-compaction

technique (Ladd 1978). Lastly, the phenomenon cannot be attributed to

a change in void ratio because that change was insignificant from the

beginning to the end of a test series in this research study. Nevertheless,
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the same behavior appeared in both research studies when the sand

was unloaded to low confining pressures. Whatever the cause, its effect

appears to be erased after the first loading cycle as is clearly shown in

Fig. 9.2. As a result, the stiffness parameters reported hereafter are

computed for the loading and unloading cycles after the initial loading

cycle, i.e., excluding the first four tests at 4, 8, 16, and 32 psi.

The dynamic stiffness equation representing the constrained

modulus as a function of the mean effective stress is cast in the form

M = CM &o nm Pal-nm/F(e) (9.1)

where,

M = constrained modulus,

CM, nm = stiffness coefficients,

jo = mean effective stress,

Pa = atmospheric pressure in same units as 6-o, and

F(e) = function of void ratio, F(e) = 0.3 + 0.7e 2 .

Equation 9.1 is a straight line relationship when plotted on a log-

log scale, and lends itself to a simple least squares fitting technique. The

log M-log &o relationships for both isotropic test series are shown as

stra~ght lines in Fig. 9.2. The resulting values for the coefficients CM and

nm are summarized in Table 9.3 for each test series. The stiffness

coefficients computed from the test steps in the biaxial test series
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Table 9.3. Comparison of Stiffness Coefficients for Log M - Log 6-o

Relationship* for Isotropic Confinement

Test Series eAverape CM nm S.E.E.#

IS01 - 1L** 0.593 1941 0.388 736

IS01 +  1813 0.476 1046

IS02 - 1L** 0.758 2020 0.395 561

IS02 +  1953 0.458 970

BIAX1 ++  0.760 2150 0.408 1022

BIAX2 0.771 2013 0.441 1993

BIAX3 0.586 2031 0.450 2019

BIAX4 0.582 2059 0.410 1341

BIAX5 0.750 2000 0.459 2021

* M = CM 0 nm Pa l nm/F(e) , F(e) = 0.3 + 0.7e2

From first four tests at 4, 8, 16, and 32 psi confining pressure
+ From all tests except first four

++ From tests in the biaxial series which are under isotropic confinement

# Standard Error of the Estimate in psi

(described in Chapter 10) that were at isotropic states of stress have also

been included in Table 9.3.

It has been shown by Roesler (1979), Knox, et al (1982), and Lee

and Stokoe (1986), that the constrained modulus is determined almost

solely by the state of stress in the direction of particle motion and wave

propagation for dilatational wav.s propagating along principal stress
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directions. This coincides with the axial stress so Eq. 9.1 can be written

as

M = CA Eana Pal-na /F(e) (9.2)

where 6-a is now the effective stress in the axial direction and CA and na

are the coefficients corresponding to a single stress in the three-stress

model described in Chapter 2. The values resulting from a least squares

fit are summarized in Table 9.4.

It can be seen the stiffness coefficients for the log M - log d-o and

log M - log 6-a relationships are similar, with the slope of the latter

marginally higher and the constant marginally lower, than the former.

However, comparison of the stiffness coefficients in Tables 9.3 and 9.4

suggests that either of these models is appropriate for the constrained

modulus over the range of stresses at which these tests were performed.

Further, it suggests there is little difference whether the axial or the mean

effective stress is used to predict the constrained modulus when the sand

is under an isotropic state of stress.

9.4 Young's Modulus of a Sand Under Isotropic

Confinement

The values of the Young's modulus (calculated at the third mode)

measured in the IS01 and IS02 test series are plotted together in Fig.

9.3. Again, it is obvious that the sand appears stiffer on the first load
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Table 9.4. Comparison of Stiffness Coefficients for Log M - Log d"a

Relationship* for Isotropic Confinement

Test Series eAverage CA na S.E.E.#

IS01 - 1L** 0.593 1933 0.393 672

IS01 1803 0.480 1114

IS02 - 1 L** 0.758 2011 0.400 601
IS02 +  1943 0.462 836

BIAX1 ++  0.760 2148 0.407 1020

BIAX2 0.771 2013 0.441 1989

BIAX3 0.586 2018 0.452 2008

BIAX4 0.582 2058 0.410 1335

BIAX5 0.750 2000 0.459 2020

* M = CA 6ana Palna/F(e) , F(e) = 0.3 + 0.7e 2

From first four tests at 4, 8, 16, and 32 psi confining pressure
+ From all tests except first four

++ From tests in the biaxial series which are under isotropic confinement

# Standard Error of the Estimate in psi

cycle than in subsequent loading and unloading cycles, suggesting the

same phenomenon affects both constrained and Young's moduli.

The dynamic stiffness equation relating Young's modulus to the

mean effective stress is written as

E = CE donm Pal nm /F(e) (9.3)
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where

E - Young's modulus,

CE, nm = stiffness coefficients,

j- = mean effective stress,

Pa = atmospheric pressure in same units as 6o, and

F(e) = function of void ratio, F(e) = 0.3 + 0.7e 2.

The values resulting from a least squares fit to a straight line log E

- log d-o relationship yields the stiffness coefficients CE and nm which are

summarized in Table 9.5 for the ISO1 and IS02 test series and for the

tests from the biaxial test series which were conducted at isotropic states

of stress. However, now there are as many as four relationships for each

test series, one corresponding to each observed mode. The coefficients

for the second and third modes in the IS01 and IS02 test series are

included in Table 9.5. Only the third mode is included for the biaxial tests

for the sake of brevity. In any event, not all the data was reliable,

particularly at low and high frequencies, and these two modes had the

most complete data (as was discussed in Chapter 7). The log E - log -

relationships for mode 3 from both test series are shown as solid lines in

Fig. 9.3.

Two observations can be made by examining Fig. 9.3 and Table

9.5. First, the slope of the lines relating the Young's modulus and the

mean effective stress are about the same for both the dense and loose

sand. Second, there appears to be a general trend for the slope to
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Table 9.5 Comparison of Stiffness Coefficients for Log E - Log 6o
Relationship* for Isotropic Confinement

Test Series eAverage CE nm S.E.E.#

- Mode

ISO1-2-1L** 0.593 1745 0.425 164
ISO1-2+ 1648 0.499 1416

IS01 -3-1 L** 0.593 1785 0.421 107
IS01 -3+  1692 0.493 1234

IS02-2-1L** 0.758 1622 0.464 330
IS02 -2+  1546 0.511 768

IS02-3-1L** 0.758 1639 0.468 234
ISO2-3 +  1575 0.516 795

BIAXl - 3++  0.760 1685 0.491 871

BIAX2 -3 0.771 1681 0.506 1796

BIAX3 -3 0.586 1850 0.470 1975

BIAX4 -2 0.582 1692 0.481 1816

BIAX5 - 2 0.750 1545 0.526 1534

E = CE 6onm Pal -nm/ F(e) , F(e) = 0.3 + 0.7e2

From first four tests at 4, 8, 16, and 32 psi confining pressure
+ From all tests except first four

++ From tests in the biaxial series which are under isotropic confinement
# Standard Error of the Estimate in psi
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decrease and the corresponding intercept to increase for subsequently

higher modes. It is interesting to note that the slopes are lower, and the

intercepts are higher, for the biaxial test series. This implies that stress

history may have an impact on the observed behavior of the sand.

9.5 Shear Modulus of a Sand Under Isotropic

Confinement

The values of shear modulus measured using the shear pulse test

in the ISO1 and IS02 test series are plotted together versus the mean

effective stress in Fig. 9.4. Here also, it is obvious the sand appears

stiffer on the first load cycle than subsequent loading and unloading

cycles, suggesting the same phenomenon affects all three moduli.

The dynamic stiffness equation relating the shear modulus to the

mean effective stress can be written as

G = CG aOnm Pal-nm /F(e) (9.4)

where

G = shear modulus,

CG and nm = stiffness coefficients,

6-o = mean effective stress,

Pa = atmospheric pressure in same units as 670, and

F(e) = function of void ratio, F(e) = 0.3 + 0.7e2.
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Fig. 9.4. Variation of Measured Shear Modulus (Gm) with Mean
Effective Stress for IS01 and IS02 Test Series on Sand.
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Table 9.6 Comparison of Stiffness Coefficients for Log Gm - Log GO

Relationship* Measured by Shear Pulse Test for Isotropic

Confinement

Test Series eAveraae CGm nm S.E.E.#

IS01 - 1L** 0.593 703 0.414 311

ISO1 +  655 0.486 1185

IS02 - 1L** 0.758 595 0.498 489

ISO2 +  584 0.515 471

BIAX1 + "- 0.760 634 0.487 837

BIAX2 0.771 674 0.484 685

BIAX3 0.586 761 0.457 772

BIAX4 0.582 755 0.474 1356

BIAX5 0.750 647 0.531 1034

* Gm = CGm -onm Pa l -n m/F(e) , F(e) = 0.3 + 0.7e2

From first four tests at 4, 8, 16, and 32 psi confining pressure
+ From all tests except first four

++ From tests in the biaxial series which are under isotropic confinement

# Standard Error of the Estimate in psi

The values resulting from a least squares fit to the straight line log

G - log 6-o relationship yields the stiffness coefficients CGm and nm which

are summarized in Table 9.6 for the ISO1 and IS02 test series and the

tests from for the biaxial test seres which were conducted at isotropic

states of stress. The independently measured log G - log 6-
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relationships for the ISOi and 1602 test series are shown as lines in Fig.

9.4.

The shear modulus can also be backcalculated from the

constrained and Young's modulus using Eq. 7.9. The backcalculated

values of the shear modulus are plotted in Fig. 9.5 and the stiffness

coefficients computed using Eq. 9.4 are included in Table 9.7 and also

shown as solid lines on Fig. 9.5. A comparison of the measured and

backcalculated values of the shear modulus is discussed in the next

section.

9.6 The Validity of the Isotropic Linear Elastic

Assumption

To backcalculate the shear modulus from the measured

constrained and Young's moduli, the simplest assumption is to assume

the sand sample is homogeneous, isotropic and linear elastic. If this

were true, the measured shear modulus and the backcalculated shear

modulus should be equal. The measured and backcalculated shear

moduli (from the third mode only) are plotted against each other in Fig.

9.6 and Fig. 9.7 for the IS01 and IS02 test series, respectively. Similar

trends are evident for the other modes as is noted by comparing the

stiffness coefficients in Tables 9.6 and 9.7. In addition, the biaxial test

series also show the same trends in shear moduli.
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Table 9.7. Comparison of Stiffness Coefficients for Log Gb - Log d-o

Relationship* (Backcalculated From the Constrained and

Young's Moduli) for Isotropic Confinement

Test Series eAverage CGb nm S.E.E.#
- Mode

ISO1-2-1L** 0.593 727 0.446 79

ISO1 - 2+  693 0.515 774

ISO1-3-1L** 0.593 757 .0445 139

ISO1 - 3+  726 0.507 656

ISO2-2-1L** 0.758 641 0.488 102

IS02 - 2+  608 0.529 390

IS02-3-1L'* 0.758 650 0.494 73
ISO2-3 +  624 0.538 392

BIAXl - 3++  0.760 662 0.518 236

BIAX2 -3 0.771 677 0.534 417

BIAX3 - 3 0.586 778 0.485 259

BIAX4 - 2 0.582 677 0.508 387

BIAX5 - 2 0.750 603 0.547 280

* Gb = CGb fonm Palfnm/F(e) , F(e) = 0.3 + 0.7e2

From first four tests at 4, 8, 16, and 32 psi confining pressure
+ From all tests except first four

++ From tests in the biaxial series which are under isotropic confinement

# Standard Error of the Estimate in psi
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Figures 9.6 and 9.7 show that the measured shear modulus and

backcalculated shear modulus tend to agree with each other within about

±10 percent. The general trend is for the backcalculated shear modulus

to be slightly higher (10 - 15 percent) than the measured value, however,

this difference corresponds to a 5 to 7.5 percent difference in shear wave

velocity, an error which is well within the range that can be expected from

the shear pulse test (see discussion in Chapter 6.3.4.).

Figure 9.8 shows the variation in the Poisson's ratio as a function

of the mean effective stress for the ISO1 and IS02 test series. Poisson's

ratio was computed from the constrained and Young's moduli (3rd Mode)

using Eq.s 7.5 and 7.6 . An examination of the test summaries in

Appendix G shows that Poisson's ratio decreases slightly for the higher

modes in a longitudinal resonant column test, a decrease which probably

reflects the increase in Young's modulus computed for each higher

mode. It is also noted that there were cases when the computed Young's

modulus was higher than the constrained modulus. In that event, the

entries for the Poisson's ratio were set to zero primarily to act as a flag to

the writer to discard that data. This occurred most often for the Young's

moduli computed for the first and fourth modes, principally because of

limitations in the ability of the equipment at low frequencies near the first

mode, and interference from high frequency motions in the vicinity of the

fourth mode (it it was observed at all).

Figure 9.8 shows a trend for the Poisson's ratio to decrease with

increasing mean effective stress. Tiis trend is also reflected in the
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slopes of the log M - log dO and log E - log cO relationships in Table 9.3

and Table 9.5, respectively. The slope of the log E - log -o relationship is

consistently a bit higher than the log M - log 6- relationship. This trend is

illustrated in Fig. 9.9 for the IS02 test series. Based on theoretical

considerations, it is not possible for these two relationships to intersect at

very high confining pressures. (The moduli, E and M, can become equal

for v = 0.) However, it is possible to postulate that they may become

about parallel at high pressures and have a constant Poisson's ratio that

approaches that of the solid particles of the sand. In effect, this suggests

the properties of the sand fabric will approach those of its solid

constituency, which suggests that any effect attributable to particle

interfaces might become negligible at higher confining pressures.

However, the pressure levels at which this might occtir are well above

those used in this study.

9.7 Comparison of Stiffness Equations with Previous

Research on Washed Mortar Sand

A comparison of the stiffness coefficients for the log M - log d-o

relationship for research work completed using the same washed mortar

sand that was used in this study is presented in Table 9.8. It can be seen

the values of the stiffness coefficients from this research are similar to

those from previous studies.
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Table 9.9 is a comparison of the stiffness coefficients for the log E -

log 6- relationship for research work completed during this study and

previous studies on cohesionless soils. Only the slope coefficient is

reported in the literature, so no comparison can be made of the constant

coefficient. The slope of the log E - log -o relationship determined in this

study compares well with those reported by earlier researchers.

Table 9.10 is a comparison of the stiffness coefficients for the log G

- log - relationship for research work completed using the same washed

mortar sand that was used in this study. Two sets of coefficients are

shown for this research, one representing the shear modulus (Gm)

computed from the independent shear pulse test described in Chapter

6.3 and the other representing the shear modulus (Gb) backcalculated

using the Young's modulus and constrained modulus from the

longitudinal resonant column and axial pulse tests, respectively. It

appears the directly measured shear modulus has a similar constant but

a slightly higher slope than found in previous studies. This is probably

due to the difficulty in identifying the far-field shear wave arrival. The

backcalculated shear modulus has a steeper slope, but a similar value

for the constant, which probably reflects the influence of the Young's and

constrained moduli from which it is calculated. It is noted that the

stiffness coefficients measured in the smaller laboratory devices tend to

be slightly higher than those measured in the large-scale triaxial device.

Figure 9.10 is a comparison of the values of the shear moduli computed

from the various research studies using the washed mort3r sand.
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Table 9.8. Comparison of Stiffness Coefficients for Log M - Log 6-o

Relationship* from Various Research Studies Using
Washed Mortar Sand

Study Void CM nm Range of Test

Ratio, e Stress, psi

Kopperman --- 0.40 10-40 a
(1983)

Chu, et al 0.64 1661- 0.41- 15-30 a

(1984) 2129 0.43
This Research 0.59 1968 0.45 4-64 b

1 0.76 2029 0.44 4-64

M = CM -nm Pal-nm/F(e) , F(e) = 0.3 + 0.7e2

a. Pulse tests in Large Scale Triaxial Device (LSTD)

b. Axial pulse tests in Multi-Moduli Testing Device (MTD)
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Table 9.9. Comparison of Stiffness Coefficients for Log E - Log d-o

Relationship* for Soils under Isotropic Confinement from

Various Research Studies.

Reference CE nm Confining Test**
Pressure

Duffy and Mindlin --- 0.50 < 5 psi a

(1957) --- 0.34 > 5 psi
Shannon, et al --- 0.50 > 4 psi a

(1959)

Hardin 0.46 - 0.62 3 - 55 psi a

(1961)

Smoots and Stickel --- 0.32- 0.56 > 4 psi a

(1962)

Wilson and Miller --- 0.40 - 0.50 > 4 psi a

(1962)

Hardin and Richart --- 0.54- 0.70 < 14 psi a

(1963) 0.46- 0.50 > 14 psi

This Research

e = 0.59 1721 0.49 4 - 64 psi a

e = 0.77 1606 0.51 4 - 64 psi a

* E = CE donm Pal -nm/F(e), F(e) = 0.3 + 0.7e2

a. Longitudinal Resonant Column Tests
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Table 9.10. Comparison of Stiffness Coefficients for Log G - Log 6-o

Relationship* from Various Research Studies Using
Washed Mortar Sand

Study Void CG nm Range of Test"
Ratio, e Stress, psi

Allen & Stokoe 0.62-0.70 720 0.48 4 - 64 a

1(1982)

Knox, et al --- --- 0.40 10-40 b
(1982)

Stokoe &Ni 0.69 721 0.44 3 - 55 a
(1985)

Lee & Stokoe 0.64 635 0.36 10 -40 b
(1986)

Ni 0.64-0.72 687 0.44 2- 55 a
(1987)

This Research 0.59 724 0.47 4 - 64 c
0.76 635 0.50 4-64 c

This Research 0.59 719 0.50 4-64 d

1 0.76 635 0.53 4-64 d

G = CG onm Palnm/F(e) , F(e) = 0.3 + 0.7e 2

a. Torsional Resonant Column Tests
b. Shear Pulse tests in Large Scale Triaxial Device (LSTD)
c. Shear Pulse tests in Multi-Moduli Testing Device (MTD)
d. Longitudinal Resonant Column and Axial Pulse Tests in MTD
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9.8 Summary

Tests were performed in the Multi-Moduli Testing Device (MTD) to

determine the stiffness of sand under isotropic loading. Two test series

were conducted, one on a dense sand and one on a loose sand. In each

series, an axial and shear pulse test and a longitudinal resonant column

test were each conducted at confining pressures of 4.0, 8.0, 16.0, 32.0

and 64.0 psi in several cycles of increasing and decreasing confining

pressures. It was observed that the stiffness of the sand was significantly

different for the first loading cycle (4.0, 8.0, 16.0 and 32.0 psi) than for the

first unloading and subsequent loading and reloading cycles. This

phenomenon suggests that the sand stiffness is susceptible to stress

history and similar behavior was noted in tests by others on the same

sand. The cause for this stress history dependent behavior may be

attributed to sample construction technique, particle rearrangement,

seating of the top cap or complex and sensitive stress conditions in the

vicinity of the specimen ends. Therefore, a distinction is made between

first load and subsequent loading when expressing the stiff ness-stress

relationships.

The tests showed that the small-strain constrained (M), Young's

(E), and shear (G) moduli could all be expressed by a constant times the

mean effective stress, do, raised to a power ranging between 0.44 and

0.53. These relationships are straight lines when plotted as the log of the

modulus versus the log of the mean effective stress, with the slope of the
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line the power of the mean effective stress. The log M - log 6o

relationship had slopes of 0.44 and 0.45 for the loose and the dense

sand, respectively. The log E-log jo relationship had slopes of 0.51 and

0.49 for the loose and dense sand, respectively. Finally, the

independently measured shear modulus had slopes of 0.50 and 0.47 for

the loose and dense sand, respectively.

The stiffness-stress relationships for those tests in the biaxial tests

series (described in Chapter 10) which were conducted at isotropic

states of stress were also determined. In general, for all moduli, the

slopes were lower, and the constants higher, than for the test series

where the sand was subjected only to isotropic loadings. This

observation lends support to the thesis that stress history may have

significant impact on the stiffness of a sand.

It is noted the slopes for the Young's modulus were steeper than

for the constrained modulus, illustrating the decrease in Poisson's ratio

that was observed as the confining pressure increased. Poisson's ratio

was computed by invoking the assumption the sand is linear elastic. The

shear modulus can be computed from the constrained and Young's

modulus by making the same assumption. The shear moduli thus

computed were generally within the 10 -15 percent of those measured

independently, an error which is mostly attributable to the difficulty in

determining the shear wave arrival in the shear pulse test used to

determine the shear modulus.
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The values for constrained modulus measured in the MTD

compared well with previous research on the same washed mortar sand.

The slope of the relationship was slightly higher than for previous work,

however, that work has been exclusively pulse tests in a large (7 ft) cubic

triaxial test device. Further, the previous work was limited to tests in a

narrower range of confining pressures.

No direct comparison can be made between the values for

Young's modulus measured in this research and those determined for

similar soils by earlier researchers. However, the slopes of the log E-log

6- relationship determined in this study compare well with those reported

in other studies.

The values for shear modulus measured in the MTD were similar

to those reported in previous research. It is noted again that the trend for

higher values appears to be related to the size of the test device. Further,

the absolute values for the measured shear modulus have to be qualified

by the possible error that is attributable to the shear pulse test as it is

currently conducted in the MTD.



Chapter Ten

Stiffness of Sand Under Biaxial Loading

10.1 Introduction

Five series of tests were performed to examine the effect of a

biaxial stress state on the constrained, Young's and shear moduli of a

uniform dry sand. The testing was conductea i, evaluate the effect of the

axial and horizontal stress on longitudinal, compression, and shear

waves propagating in the axial direction of the specimen. The goal of the

test series was to evaluate separately the influence of axia! and

horizontal stresses on Young's modulus. However, extensive data were

also gathered which enabled the effect of these two stresses on the

constrained and shear moduli to be studied.

It is assumed in this study tha,' the principal stresses are aligned

with, and perprndicular to, the axis of the specimen as illustrated ii Fig.

10.1. It is further assumed that: (1) the direction of wave propagation is

parallel to the longitudinal axis of the specimen and consequently

parallel to one of the principal stresses, and (2) the direction of particle

motion is either parallel to (for compression waves), or perpendicular to

(for shear waves), the axis of the specimen. Finally, it is assumed that

the rod wave propagates in a direction that is parallel to the axis of the

259
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Fig. 10.1. Directions of Wave Propagation and Particle Motion

Assumed for Biaxial Testing with MTD.
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specimen and that even though it has a complicated particle motion, the

major motion is parallel to the axis of the specimen and only a minor

component may be perpendicular to the axis of the specimen.

This chapter deals exclusively with testing on an uncemented air-

dried sand. The test sequence used in each of the test series is

described initially. This description is followed by an analysis of the

effect of the biaxial state of stress on the constrained, Young's and shear

moduli. Complete summaries of the test results for each test series are

included in Appendix G and only representative examples are discussed

in this chapter.

10.2 Biaxial Testing Sequence and Stress State

Five biaxial test series were conducted, and these are denoted

BIAXl, BIAX2, BIAX3, BIAX4,and BIAX5. Only two of these, BIAX4 and

BIAX5, were conducted with the vibration isolation assembly illustrated in

Fig. 5.4. The BIAXi, BIAX2 and BIAX3 test series were conducted with

and earlier less effective isolation assembly which may have influenced

the results from those tests. Table 10.1 is a summary of the loading

sequence for the BIAX2 test series and is included here as an example.

The BIAX1 test series was conducted on the same loose sand sample as

the IS02 test series. The remaining biaxial test series were conducted

on newly prepared samples, BIAX2 and BIAX5 on a loose sand, BIAX3

and BIAX4 on a dense sand. The average void ratios and relative
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Table 10.1. Summary of Loading Sequence for Loose Sand Specimen.

(BIAX2 Test Series)

Test # Void Axial Horizontal Ko Mean
Ratio Stress Stress Stress

e psi psi psi.
1 0.775 4.01 4.00 1.00 4.00
2 0.773 15.99 16.00 1.00 15.99
3 0.770 64.00 64.00 1.00 64.00
4 0.772 16.01 16.01 1.00 16.01
5 0.773 4.02 4.00 1.00 4.01
6 0.772 16.00 16.00 1.00 16.00
7 0.772 18.31 16.00 1.14 16.77
8 0.772 21.39 16.01 1.34 17.80
9 0.771 25.68 16.01 1.60 19.23

10 0.771 32.09 16.00 2.01 21.36
11 0.770 32.10 20.00 1.60 24.03
12 0.769 32.08 24.00 1.34 26.69
13 0.767 32.04 28.01 1.14 29.35
14 0.764 32.00 32.00 1.00 32.00
15 0.763 64.00 63.99 1.00 63.99
16 0.765 32.02 32.01 1.00 32.01
17 0.765 25.54 32.00 0.80 29.85
18 0.765 21.20 31.98 0.66 28.39
19 0.766 18.15 32.00 0.57 27.38
20 0.767 15.81 32.01 0.49 26.61
21 0.767 15.84 28.01 0.57 23.95
22 0.768 15.89 24.00 0.66 21.30
23 0.770 15.96 20.00 0.80 18.66
24 0.791 16.00 16.00 1.00 16.00
25 0.796 4.00 4.01 1.00 4.00

Average
Void Ratio , 0.771
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Table 10.2. Summary of Void Ratios and Densities for Test Series on
Sand.

Test Series eAverage YAverage, Relative
pCf Density, Dr %

IS01 0.593 104.7 88

IS02 0.758 94.9 27

BIAX1 0.760 94.8 26

BIAX2 0.771 94.2 23

BIAX3 0.586 105.2 91

BIAX4 0.582 105.5 93

BIAX5 0.750 95.3 29

U r-Yveraoe - YminDr = "Yae - Ymin where Ymin 90.6 pcf and Ymax = 106.6 pcf
"Ymax " Yrain

Figure 10.2 illustrates the axial and horizontal stress paths for the

BIAX2 and BIAX3 test series. Each test series started with five isotropic

test steps at confining pressures of approximately 4.0, 16.0, 64.0, 16.0,

and 4.0 psi. This was intended to eliminate the effect of stress history

described in Section 9.3. Each biaxial test series consisted of a loading

and unloading cycle during which the axial or horizontal stress was

increased or decreased while the other was held constant. The biaxial

portion of the test series actually started isotropically by increasing the

confining pressure to 16.0 psi (after finishing the first five tests). The axial

stress was then increased in increments for the next four tests while the
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a) 1st Load Cycle b) 1st Unload Cycle

3 /3

U) /
- /

< /
1" 5

Horizontal Stress Horizontal Stress

c) 2nd Load Cycle d) 2nd Unload Cycle
15 15

U, 16/

x /6 x0

5 25

Horizontal Stress Horizontal Stress

* Test Number in Table 10,1

Fig. 10.2. Loading Sequence for BIAX2 and BIAX3 Test Series.
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confining pressure was held constant. The axial stress was increased to

a maximum of twice the confining pressure (Ko = ah/aa = 0.5). Then for

the next four tests, the confining pressure was increased incrementally

while holding the axial stress constant, until the horizontal stress again

aqudled the axial stress at 32.0 psi.. The remaining test in the loading

half of the test series included a test under isotropic conditions at a

confining pressure of 64.0 psi to allow comparison with the isotropic test

series.

The unloading half of the test began by decreasing the confining

pressure to 32.0 psi. Then the axial stress was reduced in four

increments while holding the confining pressure constant until the

horizontal stress was twice the axial stress (Ko = 2.0). Next, the confining

pressure was reduced in increments until the horizontal stress again

equalled the axial stress at 16.0 psi. The final step in the unloading

sequence was to reduce the confining pressure and test at the lowest

isotropic state of 4.0 psi.

The BIAX4 and BIAX5 test series contained two biaxial "loops" like

the one just described for the BIAX2 and BIAX3 test series. The BIAX4

and BIAX5 test series had a biaxial "loop" between 8.0 and 16.0 psi, in

addition to the one between 16.0 and 32.0 psi that was just described.

The BIAX4 and BIAX5 test series are illustrated in Fig. 10.3 where they

are plotted on a two-dimensional diagram that is a representation of the

three-dimensional state of stress. The horizontal axis is the square root

of two times the radial stress because the two principal stresses equal
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each other. Consequently, the stress path for the biaxial test series will

be confined to a plane in three-dimensional stress space which contains

one principal stress axis and the stress space diagonal. The Mohr-

Coulomb failure envelopes for compression and extension are also

shown on Fig. 10.3.

Whenever testing was conducted with the axial loading piston,

load cell, and vibration isolation assembly in place, it was possible to

correct the axial stress for any additional weight on the top of the sample.

Thus, it was possible to adjust the axial load in order to achieve a more

ideal isotropic balance of stresses in the sample. A correction was also

required to account for the imbalance of forces on the sample due to the

confining pressure acting against the cross sectional area of the loading

piston. By knowing the appropriate constants and zero readings for the

transducers and load cell, it was possible to predetermine the necessary

readings to achieve the desired state of stress k r each test step in a test

series.

10.3 The Constrained Modulus Under a Biaxial State of

Stress

Figure 10.4 illustrates the results from tests in the BIAX4 test series

and shows the variation of M with the mean stress Fig. 10.4a), the axial

stress (Fig. 10.4b), and the horizontal stress (Fig. 10.4c). It is immediately

obvious that constrained modulus appears to be almost solely a function
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Table 10.3. Stiffness Coefficients for Log M - Log 6a Relationship* for

Sand Under Biaxial Loading

Test Series eAverage CA na S.E.E**

BIAX1 0.760 2082 0.453 544

BIAX2 0.771 1894 0.570 1142

BIAX3 0.586 2031 0.487 1815

BIAX4 0.582 2040 0.422 1490

BIAX5 0.750 1961 0.527 1769

M = CA Iana Palfna/F(e) , F(e) = 0.3 + 0.7e2

** Standard Error of the Estimate in psi

of the axial stress. In this case then the dynamic stiffness equation

representing the constrained modulus as a function of the axial effective

stress is taken in the form of equation 9.2

M =CA 7a na Pa1-lna /F(e) (10.1)

where

M = constrained modulus,

CA, na = stiffness coefficients,

a = axial effective stress,

Pa = atmospheric pressure in same units as 6a, and

F(e) = function of void ratio, F(e) = 0.3 + 0.7e 2.
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Equation 10.1 is a straight line relationship when plotted on a log-

log scale and lends itself to a simple least squares fitting technique. The

resulting values for the stiffness coefficients CA and na are summarized

for each biaxial test series in Table 10.3. The stiffness coefficients in

Table 10.3 are for all test steps, excluding the first two, tests 1 and 2, at

4.0 and 16.0 psi confining pressure, respectively.

It is also possible to represent the constrained modulus using a

relationship containing both the axial and horizontal stresses. This two-

stress relationship is of the form

M = CM fana 4bnb Pal -na-nb/F(e) (10.2)

where

M = constrained modulus,

CM,na and nb = stiffness coefficients,

- = axial effective stress,

- = horizontal effective stress,

Pa = atmospheric pressure in same units as 6-a and d-b,
and,

F(e) = function of void ratio, F(e)=0.3+0.7e 2.

This relationship can be transformed into a linear equation by taking the

common logarithm of both sides and a simple least squares regression

then finds the coefficients. The resulting values for the stiffness

coefficients are shown for each biaxial test series in Table 10.4.
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Table 10.4. Stiffness Coefficients for Constrained Modulus (M) of Sand

Under Biaxial Loading Using a Two-Stress Model*

Test Series eAverage CM na nb S.E.E.**

BIAXl 0.760 2082 0.451 0.002 574

BIAX2 0.771 1898 0.570 -0.006 1189

BIAX3 0.586 2005 0.448 0.079 1246

BIAX4 0.582 2034 0.384 0.058 657

BIAX5 0.750 1969 0.577 -0.077 1536

M = CM jana anb Pallna-nb/F(e), F(e) = 0.3 + 0.7e2

Standard Error of the Estimate in psi

The stiffness coefficients in Table 10.4 are computed using only the tests

which were part of the biaxial loading sequence, i.e. tests 6 - 14 and 16 -

24 for the BIAX2 and BIAX3 test series, and tests 6 - 22 and 24 - 40 for

the BIAX4 and BIAX5 test series. The corresponding stress levels were

16 - 32 psi for the BIAX2 and BIAX3 test series, and 8 - 32 psi for the

BIAX4 and BIAX5 test series.

There appears to be a significant difference in the values of the

slopes for the axial stress between the one-stress and two stress

relationships for the constrained modulus, however, most of this may be

attributable to the different stress ranges over which the relationships are

fitted and the possibility that the earlier, less effective, version of the
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vibration isolation assembly influenced the results. However, there is

also the possibility that the loose sand behaves differently under biaxial

stress loadings.

10.4 The Young's Modulus under a Biaxial State of

Stress

Figure 10.5 illustrates the effect of the mean (Fig. 10.5a), axial (Fig.

10.5b), and horizontal (Fig. 10.5c) effective stresses on the Young's

modulus for the BIAX4 test series. By examining Fig. 10.5, it can be

seen that Young's modulus is dominated by the axial stress. However,

there appears to be a slight influence from the horizontal stress.

Therefore, the dynamic stiffness equation is again taken in the

two-stress form

E = CE ana 'bnb pal na-nb/F(e) (10.3)

where E is Young's modulus and CE, na and nb are the corresponding

stiffness coefficients.

As before, equation 10.3 is transformed into a linear relationship

by taking the common logarithm of both sides. The resulting log E - log

Ea - log d"b relationship lends itself to a least squares fitting technique.
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Table 10.5. Stiffness Coefficients for Young's Modulus of Sand Under

Biaxial Loading Using a Two-Stress Model*

Test Series eAverage CE na nb S.E.E**

- Mode

BIAXl - 3 0.760 1679 0.441 0.055 420

BIAX2 - 3 0.771 1621 0.571 0.039 993

BIAX3 - 3 0.586 1806 0.451 0.098 517

BIAX4 - 2 0.582 1700 0.446 0.069 741

BIAX4 - 3 0.582 1718 0.424 0.077 581

BIAX5 - 2 0.750 1543 0.582 -0.021 794

BIAX5 - 3 0.750 1603 0.558 -0.011 977

E = CE fana jbnb Pal -na-nb / F(e) , F(e) = 0.3 + 0.7e 2

Standard Error of the Estimate in psi

The resulting values for the stiffness coefficients are summarized in Table

10.5 for each biaxial test series. Again, the stiffness coefficients include

only those tests which were part of the biaxial loading sequence.

The slope coefficients are higher, and the constants lower, for the

loose sand compared to the dense sand. This trend is similar to that

observed for the constrained modulus and may be attributable to the

possibility that the earlier, less effective, version of the vibration isolation

assembly influenced the results. Again, there is also the possibility that
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the loose sand behaves differently than the dense sand under biaxial

stress loadings.

10.5 The Shear Modulus Under a Biaxial State of Stress

Figure 10.6 illustrates the effect of the mean (10.6a), axial (10.6b),

and horizontal (10.6c) effective stresses on the independently measured

shear modulus for the BIAX4 test series. It is appa t the mean stress

alone is only a fair indicator for the shear modulus. It is also apparent

both the axial stress and horizontal stress affect the shear modulus.

The dynamic stiffness equation is again taken in the form

Gm = CGm I'ana a-bnb Pa 1 "na-nb/F(e) (10.4)

where Gm is the shear modulus and CGm, na and nb are the

corresponding stiffness coefficients.

Equation 10.4 is again transformed into a linear equatior by taking

the common logarithm of both sides and the resulting log Gm - log 4-a - log

6-b relationship is fitted using least squares regression. The resulting

values for the stiffness coefficients are summarized in Table 10.6 for each
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Table 10.6. Stiffness Coefficients for Independently Measured Shear
Modulus of Sand Under Biaxial Loading Using a Two-

Stress Model*

Test Series eAverage CGr na nb S.E.E.*

BIAX1 0.758 636 0.321 0.177 313

BIAX2 0.771 661 0.406 0.160 228

BIAX3 0.586 759 0.297 0.208 221

BIAX4 0.582 775 0.270 0.244 585

BIAX5 0.750 676 0.438 0.100 709

Gm = CGm ana a'bnb Pal fn a fnb/F(e) , F(e) = 0.3 + 0.7e 2.

Standard Error of the Estimate in psi

biaxial test series. The stiffness coefficients in Table 10.6 are for all only

the test steps that were part of the biaxial loading sequence.

The shear modulus can also be calculated from the constrained

and Young's moduli in the manner described in Section 7.2.3 by

assuming the sand is linear elastic. The resulting backcalculated shear

modulus, Gb, can be expressed using the same two-stress model used

for the measured shear modulus. The values of the stiffness coefficients

for the log Gb - log 6a - log 6'b relationship are summarized in Table 10.7.
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Table 10.7. Stiffness Coefficients for Backcalculated* Shear Modulus of
Sand Under Biaxial Loading Using a Two-Stress Model**

Test Series eAverage CGb na nb S.E.E.+
- Mode

BIAX1 - 3 0.760 663 0.438 0.076 236

BIAX2 - 3 0.771 649 0.571 0.n63 417

BIAX3 - 3 0.586 755 0.445 0.117 259

BIAX4 - 2 0.582 682 0.472 0.07,i 387

BIAX4 - 3 0.582 722 0.445 0.087 287

BIAX5 - 2 0.750 603 0.583 -0.003 280

BIAX5 - 3 0.750 636 0.551 0.015 362

* Computed from constrained and Young's moduli.

** Gb = CGb 6ana 8'bnb pal-na'nb/F(e) , F(e) = 0.3 + 0.7e2.
+ Standard Error of the Estimate in psi

Table 10.6 shows that the relative contribution of the principal

effective stresses to the shear stiffness is different for the loose and

dense sands. It appears that for the loose sand, the axial stress has

greater influence on shear stiffness than the horizontal stress. However,

the relative influence of each stress is about equal for the dense sand.

This trend does not appear to be the same for the backcalcalculated

shear modulus, where the axial stress seems to dominate more.
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10.6 Comparison of Relationships for Sand Under

Biaxial States of Stress with Previous Research

The stiffness coefficients for the moduli of washed mortar sand

under biaxial loading using the two-stress model are summarized in

Table 10.8. The stiffness coefficients listed in Table 10.8 have been

averaged from the values of each test series for the dense and loose

sand, respectively.

The stiffness coefficients for constrained modulus are similar to

those of earlier research on this sand. However, a direct comparison is

not possible because previous results are not typically presented using

the two-stress model used in this study. A review of previous studies

shows a trend for the nb coefficient (the exponent of the principal

effective stress perpendicular to the direction of wave propagation) to be

very close to zero. The values for the nb coefficient in this research

bounded zero, and their slightly larger magnitude may reflect the impact

of the extreme void ratios of the specimens used in this research.

A comparison of the stiffness coefficients for shear modulus from

various research studies of the washed mortar sand under biaxial (and

triaxial) loadings is included in Table 10.9. The stiffness coefficients for

the dense sand measured in this study compare fairly well with those

from earlier studies. However, the principal effective stresses appear to

influence the shear modulus of the loose sand differently. For the dense

sand, the influence of the axial stress is about equal to that of the
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Table 10.8. Summary of Stiffness Coefficients for Tests on Washed
Mortar Sand Under Biaxial Loading Using a Two-Stress
Model"

Modulus C I na I nb

Dense Sand e ; 0.587

M 2020 0.416 0.069

E 1758 0.440 0.081

Gb+  720 0.454 0.093

Gm++ m7 767 0.284 0.226

Loose Sand e = 0.760

M 1983 0.533 -0.027

E 1609 0.538 0.014

Gb+  638 0.536 0.038

GM++  658 0.388 0.146

Modulus = C 4'ana apb pal-na-nb/F(e), F(e) = 0.3 + 0.7e 2.
+ Caiculated trom M and E

++ Measured in Shear Pulse Test
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horizontal stress. Conversely, the axial stress is definitely more dominant

than the horizontal stress for loose sand.

The axial stress appears to almost solely control the shear

modulus which is backcalculated from the constrained and Young's

moduli. This is most likely due to the fact that the constrained and

Young's moduli depend almost solely on the axial stress. This apparent

difference highlights the problem of applying isotropic linear elastic

assumptions to a structurally or stress-induced anisotropic medium.

10.7 Summary

Five series of tests were performed to examine the effect of biaxial

loading on the constrained, Young's and shear moduli of a uniform dry

sand. The testing was conducted to evaluate the effect of the axial and

horizontal stress on longitudinal, compression, and shear waves

propagating in the axial direction of the specimen. For tests conducted

with the MTD, it is assumed that: (1) the direction of wave propagation is

parallel to the longitudinal axis of the specimen and consequently

parallel to one of the principal stresses, and (2) the direction of particle

motion is either parallel to (for compression waves), or perpendicular to

(for shear waves), the axis of the specimen. It is further assumed that the

major motion of a bar wave propagating longitudinally in the specimen is

also parallel to the axis of the specimen.
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Each biaxial test series consisted of an initial isotropic loading

cycle followed by a biaxial loading cycle. The first isotropic loading cycle,

which consisted of tests at 4, 16, 64, 16, and 4 psi confining pressure,

was performed to remove any effects which may be attributable to stress

history (as observed and discussed in Chapter 9). In the loading portion

of the biaxial cycle, first the axial stress was increased while the

horizontal stress was held constant, and then the horizontal stress was

increased while the axial stress was held constant. In the unloading

portion of the biaxial cycle, first the axial stress was decreased and the

horizontal stress was held constant, and then the horizontal stress was

decreased while the axial stress was held constant. Three of the test

series contained one biaxial "loop" between 16 and 32 psi , and two

contained two biaxial "loops", one between 8 and 16 psi and one

between 16 and 32 psi. The maximum effective principal stress ratio did

not exceed 2.0.

Stiffness coefficients for the constrained, Young's and shear

moduli were determined using a two-stress model of the following form

Modulus = C d"ana fbnb Pal-na'nb/F(e) (10.5)

where

C,na and nb = stiffness coefficients,

87 = axial effective stress,

db = horizontal effective stress,
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Pa - atmospheric pressure in same units as da and d'b,
and,

F(e) = function of void ratio, F(e)=0.3+0.7e 2.

The stiffness coefficients were determined using multiple linear

regression analysis and are summarized in Table 10.8. The regression

analysis included only the tests which were part of the biaxial loading

cycle.

The constrained modulus and Young's modulus are controlled

almost solely by the axial stress. The horizontal stress appears to have

slightly more influence on Young's modulus than constrained modulus.

However, for practical applications this difference is negligible. The

almost sole dependence of constrained modulus on the principal stress

in the direction of wave propagation and particle motion agrees with that

reported by others for tests on this same sand.

There is a notable difference between the stiffness coefficients for

the shear modulus measured in the MTD and those reported by others,

especially the coefficients for the loose sand. Earlier research on this

same sand, has shown the shear modulus depends almost equally on

the effective principal stresses in the direction of wave propagation and

particle motion. However, the shear modulus measured by the shear

pulse test in the MTD shows nearly a one to one correspondence for the

dense sand and almost a three to one correspondence for the loose

sand. This discrepancy may be caused by the difficulty in identifying the
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arrival of the far-field shear wave, which was often obscured by waves

travelling at the faster dilatational wave velocity.

The shear modulus that is backcalculated from the constrained

and Young's moduli shows more impact from the axial stress than the

directly measured shear modulus. This was probably due to the fact that

both constrained and Young's moduli are dominated by the axial stress.



Chapter Eleven

Summary, Conclusions and Recommendations

11.1 Summary

11.1.1 Background

Research over the past three decades using seismic wave

propagation testing on laboratory-sized soil specimens has focused on

finding the constitutive relationships which best characterize soil. Early

research showed that for small shear strains (less than about 0.001%),

soil would behave as a linear, elastic continuum. Most of the early

dynamic laboratory test devices were limited to testing under isotropic

conditions, and as an indirect result, it was generally believed all elastic

moduli (constrained, Young's, and shear) were controlled in a similar

manner by the mean effective stress. Research over the past decade has

shown this is not the case for constrained and shear moduli. However,

until this research was conducted, no study had been made of the effect

of stress state on Young's modulus.

Dynamic laboratory testing devices can be divided into two

general groups: those which use pulse methods, and those which use

resonant methods. The pulse devices measure stiffness by determining

the time for a polarized body wave (dilatational or shear) to travel through

286
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the material between a dynamic source and receiver. The distance,

divided by the corrected travel time, yields the body wave velocity which

is then used to calculate stiffness.

Resonant method devices measure stiffness by finding a

characteristic resonant frequency of the material from which a wave

velocity is computed by applying one-dimensional wave propagation

theory. Typically, resonant devices only find the first resonant frequency,

either torsional or longitudinal, and no adjustment is made for dispersion

which occurs due to the three-dimensional nature of the wave

propagation problem. This adjustment is normally insignificant if tests

are limited to the first resonant mode where the ., ,iengtr; is usually

long with respect to the sample diar .eter.

Pulse method devices Lsing cuhical samples have the unique

capability of being able to vary the three orthogonal stresses

independently, allowing testing under isotropic (61 = -2 = 63), biaxial

(-1 > 42 = i3 or i"1 = 2 > 43), or triaxial (51 > -2 > 3) loadings.

Torsional resonant devices can, with modification, apply biaxial

(compression only) and triaxial loadings. However, all longitudinal

resonant devices are used only under isotropic loading because of the

difficulty associated making them capable of biaxial or triaxial loading.

Research over the past decade, in which pulse and resonant

devices were used to study soils under biaxial and triaxial loading

conditions, have shown that the elastic moduli are affected differently by

the different principal stresses. That research, which was confined



288

primarily to dry sands, has shown that for waves propagating along

principal stress directions, the constrained modulus is controlled almost

solely by the principal stress in the direction of wave propagation and

particle motion. It was also found the shear modulus is controlled about

equally by the principal stresses in the direction of wave propagation and

particle motion, and is virtually unaffected by the third principal stress.

No research has been conducted to demonstrate how the state of stress

influences Young's modulus of soil.

11.1.2 Theoretical and Analytical Studies

A review was made of wave propagation theory for wave guides,

particularly the theory for waves propagating in a solid cylindrical rod. A

particular one-dimensional case was developed where one end of the

sample is subjected to a longitudinal steady-state displacement and the

other is capped by a rigid end mass. The resulting development showed

at resonance that the problem reduced to the simpler case of vibration in

a fixed-free rod. In that problem, the ratio between the sample and

added masses is related to the frequency, sample length and the bar

wave velocity by a simple transcendental equation.

The three-dimensional problem for steady-state longitudinal

waves in an infinite rod shows that the velocity of propagation is a

function of frequency, rod size, and the Poisson's ratio. The theory

shows that, for the fundamental longitudinal mode, the phase (or
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apparent) velocity approaches the value of the bar wave velocity as the

wave number goes to zero, i.e. long wavelengths. Alternatively, as the

wave number goes to infinity, i.e. short wavelengths, the phase velocity

approaches the Rayleigh wave velocity.

Finally, it is possible to obtain an approximate solution using

integral transforms for the case of transient waves travelling in a semi-

infinite rod due to a sudden impact on the end. This solution is for the

particle velocity in the vicinity of the elementary wave front. The solution

suggests that there is motion preceding the elementary wave front which

travel at velocities as high as the dilatational velonity. Therefore, theory

shows it is possible to measure the dilatational velocity by identifying the

initial wave arrival from a longitudinal pulse in a cylindrical specimen.

A finite element program, constructed with axisymmetric elements,

was used to study what effect specimen parameters (such as stiffness,

length, diameter, damping and Poisson's ratio) and specimen end

conoliions would have on the frequency response of a cylindrical

specimen. The finite element program was used to model the

longitudinal resonant column test. The study showed that: (1) the natural

frequency of a specimen is roughly proportional to the square root of the

stiffness and inversely proportional to the length, (2) the number of

clearly observable resonant frequencies decreases as the diameter

increases, relative to the length, (3) material damping less than five

percent has little impact on the natural frequency, and (4) for a given
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stiffness (E), changes in Poisson's ratio would have little effect on the

natural frequency or the computed bar wave velocity.

The finite element program had the versatility to change the end

conditions of the model specimen. A study of the effect of end conditions

showed that: (1) the presence of an added mass significantly reducea

the natural frequencies, (2) the presence of the added mass improved

the accuracy of the computed bar wave velocities, (3) Young's modulus

is underestimated if the base support is less than 90 percent of the

diameter of the sample, and (4) the horizontal displacement condition at

the ends has only a minor impact on the measurement of Young's

modulus, overestimating it by one or two percent if the end is fixed rather

than free.

11.1.3 Multi-Moduli Testing Device (MTD)

With the expressed goal of finding how the state of stress affects

the Young's modulus of a dry sand, a laboratory device was designed

and built which has the ability to measure the constrained, Young's, and

shear modulus of a cylindrical sample without changing the state of

stress on the sample. This device, called the Multi-Moduli Testing Device

(MTD), uses axial pulse and shear pulse tests to determine the

dilatational and shear wave velocities, respectively, and it uses a

longitudinal resonant column test to determine the bar wave velocity.

The MTD has the capability to perform these three tests under biaxial
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loading conditions through the use of a vertical vibration isolation

assembly, which can be used to apply a static axial load, in compression

or extension, and still allow the top of the specimen to "vibrate" freely in

the longitudinal direction.

The MTD has a pressure chamber that is 14 inches in diameter

and 18 inches high in which specimens can be confined by air pressure

or internal vacuum. There is a double acting air piston in the top of the

cell which applies to the specimen an axial loading that is measured by a

load cell. Cell and vacuum pressure are monitored by transducers and

changes in sample length are measured by two proximiters mounted on

opposite sides of the specimen.

The constrained modulus is determined from the dilatational wave

velocity which is measured using an axial pulse test. In the axial pulse

test, a piezoelectric shaker applies a step function impulse to the base of

the sample, and the time domain motions of vertical accelerometers at

the base and top of the specimen are recorded by a digital oscilloscope.

The time between the first arrivals of the impulse at each accelerometer

is adjusted for any delays, and divided into the sample length to compute

the dilatational wave velocity. The error in the constrained modulus is

estimated to be about two percent, with the largest contribution coming

from finding the travel time.

The shear modulus is determined from the shear wave velocity

which is measured using a shear pulse test. In the shear pulse test, an

electromechanical tapper applies a horizontal impulse to the side of the
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sample base pedestal and the time domain motions of the horizontal

accelerometers are recorded by a digital oscilloscope. The time between

the arrivals of the polarized motion at each accelerometer is adjusted for

any delays and divided into the sample length to compute the shear

wave velocity and the shear modulus. The possible error in the shear

modulus determined in the MTD is as high as fifteen percent. This error

is attributable to the difficulty in identifying the far-field shear wave arrival

at the top accelerometers, since the arrival is obscured by the presence

of wave motions travelling at faster velocities.

Young's modulus is determined from the bar wave velocity which

is measured by the longitudinal resonant column test. A frequency

sweep is conducted by a dynamic signal analyzer in which the

piezoelectric shaker is driven at specified frequencies and the relative

amplitude and phase between the top and bottom vertical

accelerometers is recorded. The natural frequencies of the specimen are

interpolated at ±90 degrees of phase and the corresponding phase

velocities are calculated using one-dimensional theory. The phase

velocities are then adjusted to find the bar wave velocities by using the

solution for the fundamental mode in three-dimensional theory for

longitudinal waves in an infinite rod. The resulting values for the bar

wave velocity, one for each natural frequency, typically agree within five

percent.

For one example, a test on a loose sand confined isotropically at

16.0 psi, the specimen parameters determined in the MTD were used as
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input for the finite element model. Transfer functions were determined

using the stiffness values from each of the four resonant modes observed

in the laboratory test and the bar wave velocity was computed for the

natural frequencies using the same two-step reduction method used in

the laboratory test. For this example, the bar wave velocities computed

by the model compared very well with those measured in the laboratory.

11.1.4 Tests on Sand and Other Materials

Several man-made materials and two natural soils were tested in

the course of this research. The man-made materials tested included

three plastics (polyurethane, polyvinylchloride and polyethylene) and

Portland cement concrete. The tests on plastic afforded the opportunity

to compare Young's modulus values measured in the MTD to those

computed from the shear modulus measured in the torsional shear and

torsional resonant column test. When adjusted for frequency and

temperature dependency, the Young's modulus values usually

compared within five percent. Tests were conducted on a curing sample

of Portland cement concrete. The tests began approximately five hours

after mixing and continued for seven days. This test illustrated the ability

of the MTD to test materials over a broad range of stiffnesses and values

of Poisson's ratio. A medium plasticity, compacted clay was also tested

by cyclic triaxial, torsional shear, torsional resonant column and in the
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MTD. The values for Young's modulus agreed well when adjustments

were made for frequency, strain, and aging effects.

An uncemented, uniform dry washed mortar sand was the focus of

this research. A total of seven test series were conducted on loose (Dr =

23-29%) and dense (Dr = 88-93%) sand specimens. Consistent sand

specimens were constructed using a multiple sieve pluviator (MSP). The

MSP is a column of six sieves (oriented 45 degrees to each other),

topped by a funnel that has a variable size opening. The rate at which

the sand is released from the funnel governs how dense the sand

specimen will be, with fast rates yielding loose density specimens and

slow rates yielding high density specimens.

Two test series were conducted in which a loose and a dense

sand were confined isotropically at confining pressures of 4.0, 8.0, 16.0.

32.0, and 64.0 psi in several cycles of increasing and decreasing

confining pressures. The stiffness of both the loose and dense sand was

notably higher on the first load cycle (4.0, 8.0, 16.0, and 32.0 psi) than the

first unloading and subsequent reloading cycles. This stress history

dependent behavior had been noted by others in tests on the same sand

and is possibly attributed to sample construction technique, particle

rearrangement, seating of the top cap and base pedestal, or complex

and sensitive stress conditions in the vicinity of the specimen ends.



295

11.1.5 Effect of Stress State on Elastic Moduli

of Sand

The tests on the dry sand under isotropic loading showed that the

constrained, Young's, and shear moduli (of the soil skeleton) could all be

expressed by a constant times the mean effective stress, 57, raised to a

power. These relationships are a straight line, with the power

representing the slope, when plotted log of the modulus versus log of the

stress. The log M - log d"o relationship had slopes from 0.44 to 0.45, the

log E - log d-o relationship had slopes from 0.49 to 0.51 and the log G -

log (O relationship had slopes from 0.47 to 0.50. It was noted that the

slope for Young's modulus relationship was slightly greater than for the

constrained modulus, illustrating an observed decrease in Poisson's

ratio (computed from M and E) as the confining pressure increased. If

one knows the Poisson's ratio, it is possible to calculate the shear

modulus, assuming the sand is isotropic. These "backcalculated" values

for the shear modulus were within 10-15 percent of those measured

independently by the shear pulse test, with the backcalculated values

slightly higher.

The log M - log 6- and log G - log d-o relationships have slopes

which are slightly higher than those reported by others conducting

research on the same sand. This could be due in part to the fact that the

bulk of the previous tests were conducted in a large (7 feet) cubic traxial
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test device over a narrower range of confining pressures in which there

may be less effect from end conditions.

Five biaxial test series were conducted in which the washed

mortar sand was subjected first to a cycle of tests at isotropic confining

pressures (4.0-64.0-4.0 psi). Then a biaxial cycle of tests was conducted

in which first the axial stress was varied and the horizontal stress was

held constant, and then the horizontal stress was varied while the axial

stress was held constant. This load path was done first by increasing the

respective stresses in a loading cycle and then decreasing the respective

stresses in an unloading cycle.

The log modulus - log stress relationship was expressed using a

two-stress model of the form

Modulus = C Eana 6anb Pal-nanb/F(e) (11.1)

where

C, na, nb = stiffness coefficients,

a = axial effective stress,

c = horizontal effective stress,

Pa = atmospheric pressure in same units as j-a and b,

and

F(e) = function of void ratio F(e)=0.3 + 0.7e 2.
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The stiffness coefficients for the loose and dense sand are

summarized for the isotropic and biaxial test series in Table 11.1. The

constrained modulus and Young's modulus are controlled almost solely

by the axial stress. The horizontal stress appears to have slightly more

influence on Young's modulus than constrained modulus. The shear

modulus calculated from the constrained and Young's moduli shows

more impact from the axial stress than the directly measured shear

modulus. This is probably due to the fact that both constrained and

Young's moduli are dominated by the axial stress which is subsequently

reflected in the beb,,v ' )r of the calculated shear modulus.

The air ,, .iole dependence of constrained modulus on the

principal itess in the direction of wave propagation and particle motion

agrees with that reported by others for tests on this same sand. However,

there is a notable difference between the stiffness coefficients for the

shear modulus measured in the MTD and those reported by others,

especially the coefficients for the loose sand. It has been shown the

shear modulus depends almost equally on the effective principal

stresses in the direction of wave propagation and particle motion.

However, the shear modulus measured by the shear pulse test in the

MTD shows a little more than one to one correspondence for the dense

sand and a three to one correspondence for the loose sand. This

discrepancy was most likely caused by the difficulty in identifying the

arrival of the far-field shear wave, which was often obscured by waves

travelling at the faster dilatational wave velocity.
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Table 11.1. Summary of Stiffness Coefficients for Tests on Washed

Mortar Sand.

Isotropic Test Series* Biaxial Test Series**

4 - 64 psi 8 - 32 psi

C I nm C na nb

Dense Sand e = 0.587

M 1968 0.445 2020 0.416 0.069

E 1721 0.486 1758 0.440 0.081

Gb+  719 0.504 720 0.454 0.093

Gm ++  724 0.472 767 0.284 0.226

Loose Sand e = 0.760

M 2029 0.442 1983 0.533 -0.027

E 1606 0.510 1609 0.538 0.014

Gb +  635 0.533 638 0.536 0.038

Gm ++  635 0.504 658 0,388 0.146

* Modulus = 'onm Pa1 -na/ F(e), F(e) = 0.3 + 0.7e2

** Modulus = C d-anadanb Pa1 -na-nb/ F(e), F(e) = 0.3 + 0.7e2

+ Calculated from M and E

++ Measured in Shear Pulse Test
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11.2 Conclusions

The following conclusions can be made as a result of this

research.

1. The solution for one-dimensional motion in a finite rod

subjected to steady-state longitudinal motion at one end and having a

rigid mass at the other is, at resonance, identical to that of a fixed-free rod

with an added mass. This makes it possible to compute the bar wave

velocity based on the assumption of one-dimensional longitudinal motion

in the specimen.

2. The solution for longitudinal waves in an infinite cylindrical rod

shows that the phase velocity is a function of frequency (wave number),

rod radius, and Poisson's ratio. For the fundamental mode, the phase

velocity approaches the bar wave velocity for long wavelengths and the

Rayleigh wave velocity at short wavelengths (with respect to bar radius).

3. An approximate solution for transient wave propagation in a

semi-infinite bar caused by a sudden impact at the end suggests that

some wave motion will travel at velocities approaching the dilatational

wave velocity. Therefore, it is possible to identify the first arrival of a

pulse travelling longitudinally in a cylindrical specimen as that which

corresponds to the dilatational wave.

4. A finite element model, constructed with axisymmetric finite

elements is a valuable tool to study the steady-state behavior of a typical

laboratory-sized soil sample. Employed as such a tool, the finite element
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model leads to the following conclusions about the effect of different

specimen parameters and end conditions on the response at the top of

the specimen due to longitudinal excitation at the base:

a. The natural frequencies are roughly proportional to the

square root of Young's modulus of the material specimen.

b. The natural frequencies are inversely proportional to the

length.

c. The number of clearly observable natural frequencies

decreases with increasing diameter (length staying the same).

d. Changes in damping (hysteretic) within a range from

0.5% to 5.0% will not significantly affect the observed natural

frequencies.

e. For a constant Young's modulus, changes in Poisson's

ratio have only a minor effect on the observed natural frequencies.

f. The presence of a rigid mass reduces the natural

frequency of the specimen and increases the respective wavelength.

g. Estimations of the bar wave velocity appear to be

significantly improved by the presence of the added mass.

h. Young's modulus will be significantly underestimated if

the base pedestal diameter is less than 90 percent of the sample

diameter.

i. The difference in bar wave velocities for end conditions

ranging from a free to fixed horizontal displacement conditions is two

percent or less. The fixed condition results in slightly higher velocities.
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5. It is feasible to construct a test device which can measure three

small-strain moduli independently without changing the stress state or

end conditions of the sample.

6. It is feasible to measure multiple longitudinal natural

frequencies in a specimen using a piezoelectric vibration generatur and

accelerometers mounted along the centerline at each end of a soil

specimen.

7. It is possible to calculate the theoretical bar wave velocity from

any of the first three natural frequencies using a two-step reduction

method which first determines the phase velocity using one-dimensional

theory. The second step computes the bar wave velocity from the phase

velocity based on the frequency spectrum of the fundamental mode

found from three-dimensional theory. This adjusts for the dispersion in

the phase velocity for waves travelling in cylindrical rods as predicted by

theory and observed in the laboratory testing.

8. Tests on plastics and compacted clay show the values for

Young's modulus measured in the Multi-Moduli Test Device (MTD)

compare within five percent to those measured, or derived from, cyclic

triaxial, torsional shear, and torsional resonant column tests.

9. The MTD can measure the elastic moduli of a broad range of

civil engineering materials including soils, asphalt concrete, and Portland

cement concrete.

10. The dilatational wave velocity can be measured by exciting

the entire base axially with a step function pulse and observing the first
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arrival at the top accelerometer. For the instrumentation used in this

study, the resulting constrained modulus has a measurement error on the

order of two percent or less.

11. Tests on dry, uncemented sand, subjected to isotropic and

biaxial stress conditions showed that when confined isotropically, all

three moduli (M, E and G) could be adequately described by a

relationship involving a constant times the mean effective stress raised to

a power ranging between 0.44 and 0.50. A summary of the average

stiffness coefficients for the dense and loose sands is included if, Table

11.1.

12. Poisson's ratio of the sand decreases as confining pressure

increases f-)r tests under isotropic loading.

13. Stress history has an impact on the stiffness of the sand for

initial loading conditions at confining pressures below 32 psi.

14. When the sand was subjected to biaxial compression or

extension, it was shown that the effective principal stresses influenced

each modulus differently. It was found that:

a. For M, the principal stress in the direction of wave

propagation almost solely controls the modulus.

b. For E, the principal stress in the direction of wave

propagation dominates the modulus. Howsver, the principal stresses

perpendicular to the direction of wave propagation have marginally more

influence on the Young's modulus than the constrained modulus.
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c. For G, both principal effective stresses influence the

shear modulus. However, this study shows the influence of the stress in

the direction of wave propagation could be more influential than the

stresses perpendicular to the direction of wave propagation. This is

contrary to research by others on this same sand, which showed the

shear modulus was about equally influenced by the principal e,'tive

stresses in the plane containing the direction of wave propagation and

the direction of particle motion. This difference could be due to the fact

that the MTD can only load the specimen biaxially and this will require

further study.

15. The shear wave tapper used for the shear pulse test is not an

adequate source to generate the clean, polarized shear waves

necessary to identify a shear wave arrival in the size of sample used in

the MTD.

11.3 Recommendations for Future Research

The following recommendations are broken into three general

groups: (1) changes to the Ml D, (2) theoretical developm nt and

analytical studies using the finite element program, and (3) studies of

soils and other civil engineering materials using the MTD.

1. Changes to the MID. The MTD continuously evolved as this

research progressed. It was not possible to incorporate the following
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specific modifications within the time allowed for this research. However,

they are recommended because the modifications should improve the

accuracy of the results measured and extend the capabilities of the MTD.

a. The axial and shear pulse tests and the longitudinal resonant

column tests should be automated. The ability to set and run

automatically will reduce the work load on the operator, reduce the

possibility of error and increase the speed of testing.

b. Replace the current load cell with a static piezoelectric load

cell. This will allow taller sampleb in the cell and eliminate a

cumbersome sensor cable.

c. Install case-isolated feed-throughs for sensor leads in the cell

casing, versus the', current location in the top plate. This will greatly

simplify the set-up process.

d. Use proximiters to measure changes in diameter. This will

reduce the error introduced by assumptions made to compute volume

change.

e. Modify the sample top cap to install an accelerometer flush with

the top of the sample like the one that is currently installed in the base.

f. Design a new shear wave source. The current tapping device

generates both dilatational and shear waves in the sample. Consider the

use of piezoelectric crystals mounted in the base pedestal.

g. Improve the top cap vibration isolation assembly.

h. Modify the base plate to allow testing of saturated samples.
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i. Modify the sample base pedestal to allow tests where only a

point on the central axis is excited.

2. Theoretical and Analytical Studies. Two avenues are available

to further investigate the theory as it was applied in this research.

a. Develop a closed-form solution for a solid cylindrical rod

subjected to a steady-state longitudinal displacement at one end and

having a rigid mass at the other. Investigate ways to apply that solution

to reducing laboratory data.

b. Study the impact of specimen parameters on the arrival of the

dilatational wave.

c. Develop a reduction method which optimizes use of the

multiple natural frequencies measured by the longitudinal resonant

column test to find the bar wave velocity and damping in the specimen.

d. Study the distribution of strain in a model specimen resonating

at its natural frequencies.

3. Studies of Soils and other Civil Engineering Materials. This

research demonstrated the ability of the MTD to measure the elastic

moduli of civil engineering materials with a broad range of stiffness

properties. Potential studies in the MTD may include:

a. Development of damping measurements in the MTD. As

currently configured, the MTD has the possibility of performing three

independent damping measurements by using: (1) the logarithmic
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decrement (of a free vibration curve), (2) the half-power bandwidth

method, and (3) the difference between the resonant and natural

frequencies of each mode.

b. Further studies on the behavior of sand under anisotropic

states of stress should be conducted including:

(1) more tests to study the effect of stress state on Young's

modulus,

(2) more tests at different void ratios (densities), and

(3) tests to study the effect of stress path on Young's and

other elastic moduli.

c. Further studies of the effect of axial strain level on the stiffness

of sand under isotropic and biaxial stress states.

d. Tests on other soils such as clays, silts, and gravels. Also tests

on saturated soils.
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A.1 Elastic Solution for Isotropic Materials

In its most general form the relationship between the components

of the stress tensor, tij, and the components of the strain tensorEkl is

given by

Tij = Cijkl Ekl (A. 1)

where

Cijkl = Cjikl = Cklij = Cijlk (A.2)

and Cijkl is a tensor having 81 separate components. Equation A.1 is

recogrized as the generalized Hooke's law. Here i,j,k and I represent

commonly used index notation and can each take values of 1, 2 or 3 in

correspondence to the three reference directions in Cartesian

coordinates. Equation A.2 actually limits Cijkl to 21 independent

components. This reduction occurs by imposing the assumptions the

material is homogeneous (Cijkl is independent of location) and that the

material behaves linearly elastically (Cijkl is constant). Finally, by

recognizing the symmetry of the stress and strain tensors, and

recognizing the existence of a linear strain energy density function, we

arrive at the 21 independent constants which represent a fully anisotropic

material. If a material is elastically isotropic, it is assumed there are no

preferred directions and the elastic constants are the same whatever the
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orientation of the Cartesian coordinate system in which cij and -ij are

evaluated. This implies that the constants Cijkl can be expressed as

Cijkl= XijKI + 4(8 jI + 8l8jk) (A.3)

where 8ij is the special tensor known as the Kronecker delta, which is

equal to 1 when i = j and equal to 0 when i * j. and X and p are Lame's

constants. Hooke's generalized law then assumes the well-known form

Tij = X-kj + 2Wij (A.4)

Now consider two cases; i * j and i = j. If i # j, a state of pure shear

exists and

-rij = 2pi (A.5a)

or alternatively

1,ij-- G i (A.5b)

where p. = G and is known as the shear modulus.

If i = j, Eq. A.4 becomes

,tii= 3X cii+ 2p qi (A.6a)

or
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ii = (3X+ 2p) Eii (A.6b)

and if we perform the implied summation letting 1:i1 = T22 = T:33 = -p, a

state of hydrostatic compression occurs and

=-(3X+ 2  ii (A.6c)

Here
2
3+ > 0 (A.7)

where B is known as the modulus of compression or the bulk modulus.

Another special state of stress assumes all strains except E11

equal zero. In this case, Eq. A.4 becomes

T,11 = X EI 1+ 2g ci11 = (X +211) Eli1 (A.8)

Here

M = (X. + 2l) Ell (A.9)

where M is known as the constrained modulus.

One final special stress state warrants discussion. If the strain

tensor is written in terms of the stress tensor by substituting Eq. A.6b in

Eq. A.4, it results in
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1 1Ljij (A. 10)

2g 2g(3X+2g)

If 1ij * 0, and all other 1;ij = 0, a case of pure tension exists. Equation A.10

yields

_ _ _ _ _ 1
-11 = g (A. 1la)

-X
E22 = £33 =- T1 1 (A. 11 b)

and substituting Eq. A.1 lb into Eq. A.1 la

-x,
E22 =r33= - 1 1 (A.11 c)

2(X+)

Equations A.1 la and A.1 Ic yield the constants known as Young's

modulus and Poisson's ratio:

E -(3X+2g) (A. 12),+g

-£22
- -2 11 (A.13)

I 1 2(Q.+4)
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The fundamental point to note is that a homogeneous isotropic linear

elastic material can be completely characterized by two elastic constants.

Table 3.1 relates common constants for an isotropic linear elastic

material.

A.2 Elastic Solution in Cylindrical Coordinates

Whereas Eq. A.4 is frequently presented in terms of Cartesian

coordinates, using x, y, and z to represent the orthoganal coordinate

directions and u, v, and w, the respective displacements in those

directions, it is often convenient to represent the three-dimensional

problem using cylindrical coordinates. In this case the coordinates

directions are denoted by (see Fig. 3.1) r, e, and z. Denoting the

displacements in the coordinate directions as u, v, and w, respectively,

the strain-displacement relationships are given by

Eau u 1 av Mw (A14 a,bc)
--r r r - I

oav v 1 au= r - r r oe (A.15)
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1 aw oav
2Ez 2Ez = r--+ a- (A.16)r ae az

2Erz 2Ezr au + aw (A. 17)
2 Era z ~ a r

and the stress-strain relations following from Eq. A.4 are of the form

Tr MA + 2 au (A. 18)

3v r

'te=XA+2J y+ a v-) (A.19)

aw
cz LXA + 24 a z (A.20)

Tr , av-%_ + _ u (A.21)
r= r r re

tez= -{ W+ av (A.22)

aurz 5 + (A.23)
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where, A, the dilitation is defined as

A = u + + 1av + aw(A.24)ar r r ae az
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Theoretical Solution for Waves Propagating In a Cylindrical

Elastic Rod
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B.1 Equations of Motion for a Linearly Elastic Body

Derivation of the equations of motion in a continuous media

begins with the principle of balance of linear momentum. That principle

states that the instantaneous change of the linear momentum of a body is

equal to the resultant external force acting on the body at the particular

instant of time. Mathematically this can be stated as

j tdS + JPfdV = jp u'dV (B.1)

where V represents an arbitrary contiguous volume enclosed by the

surface S. Here t is the distribution of surface tractions on S, f is the

distribution of body forces acting on V and u is the distribution of the

acceleration in V.

The Cauchy stress formula relates the stress tensor, ", to the

surface tractions by

t =t n (B.2)

where n is the unit normal vector to the surface S. Substituting Eq. B.2

in Eq. B.1 and writing in indicial notation, the balance of linear

momentum can be written as
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tijnidS + jp fjdV = jp j6ui dV (B.3)

Transforming the surface integral into a volume integral using Gauss'

theorem which states

j Tij.i dV = 5 [tij ni dS (B.4)

This Eq. B.3 becomes

J(tEij.i + pfj - pui) dV = 0 (B.5)

which for a continuous volume yields Cauchy's first law of motion

1;ij,i + pfj = P Uj (B.6)

The problem statement for the motion of a homogeneous isotropic,

linear elastic body consists of the stress equations of motion (Eq. B.6),

Hooke's generalized equation relating stresses and strains (Eq. A.4) and

the strain-displacement equations, given by
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qj = (Ui + Uij) (B.7)

Equation B.7 invokes the common assumption of "small" strains

associated with linear elastic theory. If Eq. B.7 is substituted into Eq. A.4,

which is then substituted into Eq. B.6, it yields the displacement

equations of motion

pui,ii + (X + V)ui,1 i + Pfi = puj (B.8)

B.2 The Equations of Motion Expressed in

Displacement Potentials

The displacement equations of motion as written in Eq. B.8 are

difficult to deal with because they couple the three displacement

components. It is a common practice to express the components of the

displacement vector in terms of the derivatives of potentials which

themselves satisfy uncoupled wave equations.

The displacement equations of motion in the absence of body

forces, can be written in vector notation as

gV2u + (X + I)VVOU= pu (B.9)
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If we decompose the displacement vector into the sum of a scalar, (p, and

a vector, W, potential such that

u= V(P+VAl (B10)

and substitute Eq. B.10 into Eq. B.9, it yields

V2[V(p + V AVS + (X + t)VVOe[Vp + V A Xls ]

= [V + V A (B.11)

Noting that VV.q =V2(p and V*VAW = 0, we obtain after rearranging

Eq. B.11

V[(X +21g)V2p( - pp] + V A [lIV2l - pi] = 0 (B.12)

By inspection, for Eq. B.1 2 to be true, the terms in brackets must each

equal zero and with rearranging yields

V2 = p 1 (B. 13)

(P X+2 L-!
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p. 1

V2=P= C(B.14)

where

CL2 = and CT2 =- (B. 1 5a,b)
P P

Equations B.13 and B.14 are uncoupled equations of motion in (P and V.

The scalar potential and the three components of the vector potential are

generally coupled through the boundary conditions of any particular

problem. However, if the boundary conditions can be adequately

described in terms of the potential functions then a unique solution can

be found. It should be noted that (p and V together contain four functions

which are related by Eq. B.IO to the three displacement functions. This

implies an additional constraint condition is required and usually, but not

always, the components of V, are related by

V 0 xv= 0 (B.16)

B.3 The Problem Statement for Waves in a Rod of

Circular Cross Section
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In cylindrical coordinates the relation between the displacements

u, v, and w in the r, 0, and z directions follow from Eq. B.10 as

U=a(p +1 ayz " 'z (B.17)

1rcYY r ae z

1 =- _ W Z (B.18)
r aO oz a r

W p 1 a(Wor) 10ar (B.19)
w= +r ar- r a (

The four equations of motion in terms of the displacement potential are

V2 1 aL2 2 (B.20)

V2V Lr 2 awe 1 a211Jr

r2 - r2 aO CT2 2 (B.21)

V 'e 2 ar 1 a.22)

w1 e" r2"r2 ae = c T2 oht2

V21 z 1 a2 wZ (B.23)
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Note two equations, Eq. B.20 and Eq. B.23 are uncoupled. The

components of the vector potential must also satisfy a constraint

condition such as that given by Eq. B. 16.

The displacement equations of motion written in terms of the

displacements u, v, and w are

u 2oav +1 DA 1 a2u
2u " 1-1 r =cT2 _2 .

aO 1-2v a
v 2 oDu 1 1ODA 1 O32v

V2v -F2 - + 1- roe CT 2 o-2  (B.25)

V21 O3A 1 a2 w--r =' --2B.6
1-2v CT2

where V2 is the Laplacian and is defined by

a2  1 a 1 a2  a2
r2 + r- + F2 + -Z2(.27)

and the dilatation, Ais as defined in Eq. A.24 and Poisson's ratio, v, is

defined in Eq. A.13.

The pertinent stress-strain relations are

au
Tr = XA + 2P F- (B.28)
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're + I u] (B.29)

[urz _W + (B.30)
tt z ar j

B.4 General Solution for Time-Harmonic Motion in a

Long Cylindrical Rod with Solid Cross Section

For the case of an infinitely long cylinder of solid cross section and

radius a, the boundary conditions at r = a are

tr = 0, treO= 0, Crz = 0 (B.31 a,b,c)

provided no surface tractions exist.

Considering the scalar potential (p(r,O,z,t) and a wave propagating

in the positive z direction is of the form

= c1(r)e(6)e-i(kz-(t) (B.32)

which presumes a separation of variables type solution in r and 0.

Substituting this function for (p into Eq. B.20 and rearranging yields
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separate second order differential equations for the functions of 0 and E.

The solutions for 8(0) are sines and cosines of the argument no where n

can only be zero or an integer. The solutions of D(r) are ordinary Bessel

functions which by necessity are only of the first kind because of the solid

cross section (the displacement at r = 0 must be finite). The solution for (p

then is of the form

(p = [Alcos(nB) + A2sin(nO)] Jn(pr) e-i(kz -cot) (B.33)

where Jn are Bessel functions of the first kind and order n, A1 and A2 are

constants and p is defined by

2
p2 2 . k2 (B.34)

A similar treatment of the other uncoupled wave equation given by

Eq. B.23 yields a solution for Wz of the form

Wz = [Bicos(nO) + B2sin(nO)] Jn(qr) e-i(kZ-OA) (B.35)

where q is defined by

032q2 2 _T 2 k2 (B.36)
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The solutions for i./r and xge are necessarily difficult because they

are coupled by Eqs. B.21 and B.22. On further investigation it becomes

evident 'yr and xVe also contain trigonometric expressions of 0. However,

it is noted that a sine-dependence on 8 of one potential is consistent with

a cosine dependence on 0 of the other. The converse can also be true.

Substituting functions for one possible pair having the form

Wr = Tr(r)sin(no) e-i(kz-wt) (B.37)

We = 'e(r)cos(nO) e -i (kz -cot) (B.38)

into Eqs. B.21 and B.22 and imposing the constraint condition, Pr = Te

(as opposed to that represented by Eq. B.16), yields

Wr = C2Jn+1 (qr)sin(nO) e-i(kz-wt) (B.39)

We = -C2Jn+l (qr)cos(nO) e-i(kz-wct) (B.40)

If the following pair of equations derived from Eq. B.33 and Eq. B.35

= A1Jn(pr)cos(nO) e-i(kzwt) (B.41)

Wz = B2Jn(qr)sin(nO) e-i(kz-ct) (B.42)
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are considered together with Eqs. B.39 and B.40, the general motion in

the cylindrical rod is completely defined. These four equations can be

used to express the stresses in terms of the potentials. By applying the

boundary conditions of Eq. B.31a,b&c, three homogeneous equations

can be obtained to determine the values of the constants A1 , B2 , and C2.

The requirement that the determinant of coefficients vanishes provides a

complicated frequency equation which relates o, n, and k. It is noted that

an alternate set of equations similar to Eqs. B.39 - B.42 can be chosen

merely by exchanging the sine and cosine functions of ne.

It is further noted that the analysis for a hollow cylindrical rod can

be accomplished in the same manner. However, now the solutions

containing the Bessel functions must retain Bessel functions of the

second kind. The corresponding expressions for the potentials now

contain six arbitrary constants which can be solved for if the stresses on

the inner wall vanish as well, thus yielding six homogeneous equations.

The frequency equation is then obtained from the requirement that the

determinant of the coefficients vanishes.
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C. 1 Theoretical Solution for a Transient Wave

Propagating in a Semi-infinite Solid Cylindrical

Rod

The simplest solution for transient waves in a rod assumes a one-

dimensional state of stress and the applicable equation of motion (Eq.

B.26), derived in Appendix B, is

_2w 1 a2W

aZ2 - B 2 (C1)

where w is the displacement parallel to the longitudinal axis of the rod

and CB is the theoretical bar wave velocity defined by Eq. 3.12. This

wave equation predicts that a pulse will not change shape as it

propagates along a rod. However, if the pulse is applied rapidly, the

resulting waveform shows dispersion as it travels along the rod.

Casting the problem in terms of the displacement potentials

following the manner of Achenbach (1973) the pertinent expressiois

relating the displacements to the potentials for the axisymmetric case (v =

a= 0) from Eqs. B.20 - B.23
ae

u(r,z,t) = L- - 01 (C.2)
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a)qp 1 D)(r )
w(r,z,t) = -+ r -(r) (C.3)

where the single remaining component of the vector potential Ve is now

denoted by W. Only two of the four equations of motion remain. These

are

1 2( ( .4)
2 CL2 ot2

V2 1 a2 W(C 5
- r2 = CT2 2(0.5)

and the Laplacian is now defined by

@2 1 a a2
V2 = T-2 + r 5- + oz2 (C.6)

The pertinent components of the stress tensor in terms of the potentials

follow from Eqs. B.28-B.59 and Eq. C.2 and Eq. C.3. These are

Tr = V2 0 + 2. a aP (0.7)

a I~[ 1r8(r)]-'t . 2 p Z 1 + r ar (C. 8)
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r -- r (C.9)

Solutions to these equations must satisfy the boundary conditions at the

end of the rod, at the lateral surface and at a point an infinite distance

along the rod. Summarizing these we have

for 0 _ r ! a Tz(rO,t) = -PH(t) (C.1 Oa)

for 0_ r5 a u(r,O,t) =0 (C.lOb)

for z -a 0 tr(a,z,t) = 0 (C. 1 Oc)

for z _> 0 trz(a,z,t) = 0 (C.1 Od)

for 0< r _ a u(r,oo,t) =0 (C.lOe)

for 0< r5 a w(r,o,t) =0 (C.lOf)

As the rod is at rest at time t = 0, the initial conditions are

u = w = u = w ='tr= z = rz= (.11)
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Substitution of the displacement and stress tensor equations into the

boundary conditions given by Eqs. C.10a and C.10b and the stross

tensor for tz in Eq. C.8 and recognizing that (p also satisfies the equation

of motion in Eq. C.4, it is possible to write the boundary conditions at

z = 0 in terms of the potentials (p and x. Doing so then,

atz=O,for 0:<ra pp = -PH(t) (C.12)

at z = 0, for 0<r:a -- = 0  (C. 13)

Integral transforms are a common method of solution used in these types

of wave propagation problems. For this problem, Fourier sine and cosine

transforms are used with respect to z and a one-sided Laplace transform

is used with respect to t. The appropriate transform pairs are defined for

0 < z _ and 0 5 t < as:

sine transform; fs(t) = if (x)sin~xdx (C.1 4a)

f(x) = 2 jfs(4)sintxdt (C.1 4b)

mco
cosina transform; fc( ) = Jf(x)costxdx (C. 15a)
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f(x) = 2 jfc(t)sin~xdt (C.1 5b)

00

Laplace transform; f(p) = jf(t)e-Ptdt (0.1 6a)

,Y+jOO

f(t) = PJ(p)ePtdp (C.1 6b)2ni
7-j00

The form of the boundary conditions given at z = 0 in Eq. C.12 and

Eq. 0.13 suggest the use of a cosine transform for V and a sine transform

for (p. The one-sided Laplace transform is also applied to eliminate the

dependence on time t. Transforming the equations of motion in Eq. C.2

and Eq. 0.3 and applying the initial conditions in Eq. 0.11 and the

boundary conditions in Eq. C.12 and Eq. 0.13 yields

d2 ps 1 d Ps 2s
dr2 + r dY+ AP p3  (0.17)

d2  dVc +4 (21
dr2 * + 2 ) =0 (0.18)

where
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OC2 .p2 p 2 .p 42 (C. 19a,b)

CL 2 -CT2 a

It is noted the solutions of qs and Wc will involve Bessel functions and for

a solid rod must remain bounded at the center. Thus,

P 4 C.0
(ps = AJo(cir) + p3(.20)

and

i =BJ(r) . (C.21)

The remaining boundary conditions at r = a also need to be

satisfied. Transforming Eq. C.10c using the Laplace and Fourier sine

transforms and substituting Eqs. C.20 and C.21 yields at r = a

(p2- k2 )jo(aa) + -J1(a)] A +2 [IxJo(Pa) - .Jj(pa)] B

- x (C.22)X+2 .I. p o
2  22

And similarly applyin. the Laplace and Fourier cosine transform to

Eq. C.1Od and again substituting Eqs. C.20 and C.21 yields at r = a,

2a J1 (aa)A + (32 - 42 )j 1 (Pa)B = 0 (C.23)
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The solutions for A and B follow from these two equations ad are

A ),p . p2- 2 J, (Pa) (0. 24)A X+21p p P (2  D (.4

2X P 1 2 J,(aa) (0.25)BX +24. L P a D (.5

where

2cx
D = -2- (32 + 42 )Jl(xa)Jl(pa) - (p2 -42 )2 Jo(oXa)Jj(Pa)

- 4ax1 2 J1(oa)Jo(13a) (C.26)

The particle velocity, V, in the axial direction will be the focus of

remaining development. In terms of the potentials it can be defined from

Eq. C.3 as

aw _(, 1 a(rw)V(r,z,t) = -- = Tz + r a r-  (C. 27)

Applying the Fourier Cosine and Laplace Transforms results in

-P 1 P (C.28)
V - + pS, r j (rlc (
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which can be rewritten by substituting the solutions for cPs and ic given by

Eqs. C.20 and C.21 as

Vc P 1 p , p 2 N
p p2+42CL2 - X+2li p P a2 D (C.29)

where D is defined by Eq. C.26 and

N = ( 2- 2 )Jo(or)J l ( a) - 2oxPJ(r)Jj(axa) (C.30)

Inversion of the transforms to find V(r,z,t) now remains the only task,

however, it is a formidable one. First consider the inversion of the

Lapl,:ce transform in accordance with Eq. C.16b. It is possible to perform

the i itegration in the complex p-plane by applying Cauchy's residue

thec"rem where the path of integration is closed by a semicircle of infinite

radiL.s about the origin in the left half-plane.

It can be shown by manipulating Eq. C.30 that only even powers of

a ard P appear so there are no branch points in the complex p-plane.

Furt ;e,, by replacing the Bessel functions by their appropriate asymptotic

form. for large arguments the integral over the infinite semi-circle

vani-hes. Therefore, the original integral is equal to 2ni times the sum of

the residues in the left plane.

With close examination, both terms of Eq. C.30 have poles at

±i'CL, however, it can be verified the residues of these poles cancel
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each other and the remaining poles occur where the function D(p, )

vanishes. If the substitution p = io is made in Eqs. C.26 and C.19a,b the

equation D(p, ) = 0 takes the same form as that for the frequency

equation for longitudinal motions of a rod that is presented in Section

3.4.2 (Eq. 3.55) with the only difference being the transformed variable

in the location of the wave number k. As a result, for any value of there

are an infinite number of poles along the imaginary axis of the p-plane at

positions defined by p = iWn, where the functions wn( ) are the circular

frequencies of longitudinal modes in a rod. The contributions of these

poles leads to a summation for the solution for VC given by

X. PM
Vc - 2i 2Mn(WOn,f)sin(nt) (C.31)

X+21 i n= I

where

Mn(wn, ) 1 N (C.32)Mn~l~, )=a2 aD/Dp Ip=iwn

It is relatively simple now to apply the inversion integral for the Fourier

cosine transform to the infinite series for Vc yielding

X P0 (.33)

X+21 In

where
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In .4i 2Mn(on,)sin(o.nt)cos( z)d (C.34)it

To evaluate the particle velocity at large time the integrals in Eq. C.33

can be recast in the form

00

In = 2i fr2Mn(On, ).f[ei(Z-nt), ei(4z+Ont)]d (C.35)

0

At large values of dimensionless time, such as CLt/a an approximate

evaluation can be accomplished using the stationary phase method.

This approximate method is outlined by Achenbach(1973) and discussed

in some detail by Skalak(1957) when applied to transient motions in a

rod. Borrowing on a development by Jones(1964) for transient motion in

a layer, it can be shown that the contributions of the various branches of

the frequency spectrum will at most be on the order of (CLt/a)-"1/2, except

at positions of stationary group velocity where the contributions are of the

order (CLta)"1/3. Additional contributions may come from poles on the

real -axis but Skalak(1957) presents an argument for the case of a rod

in that aD/ap cannot vanish for real values of 4. In the present problem it

should also be noted that for the lowest mode co, that the contribution is

proportional to in the vicinity of 0 and the presence of a2 in aD/ap in
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the denominator causes a simple pole at = 0, which also coincidentally

is a point of stationary phase. It can be further demonstrated that the

group velocity is also stationary at 4 = 0. As a result, the contribution of

the lowest mode at small values of 4 predominates over the contributions

from large modes particularly because it does not decay with time.

Following Skalak's (1957) development, it can be noted the

frequency for the lowest longitudinal mode can be approximated by

(01 = CB 7- y 3  (C.36)

where CB is the bar velocity and y is defined as

., = .v2CBa2 (C.37)

Here v is the Poisson's ratio. By substituting o)l = CBt into M(Col, ), and

taking the limit as 4 goes to zero, the essential contribution to I1, can be

determined from Eq. C.35 by limiting the range of integration to < c

where E is small. Thus

+C

1! C 2 C r e ('Ont), ei(z+ Ont)ld (C.38)
CB-f0

0
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Next the upper limit of these integrals are extended to infinity because

the integrals so added are of the order (CLt/a)-1 /2. If just the first term of

Eq. C.36 is substituted into Eq. C.38 it yields

1 P
V(z,t) = Bp H(CBt-Z) (C.39)

which is the solution according to elementary theory. Note, the waveform

in the elementary solution is independent of , or stated differently, the

velocity is independent of the frequency, and the waveform will not

disperse as it travels along the rod.

A better approximation is obtained if both terms of Eq. C.36 are

used. This results in

Ii -L [F CB + F2] (C. 40)

where F, and F2 are given by

F1 =-1 f sin[t(z-CBt)+yt3t] dt (C.41 a)

0

00

F2 = 1 f sin[-t(Z+CBt)+yt3t] d (C.41b)

0
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By changing the variable the expressions for F1 and F2 can be

written as

Fn =1sinqnrl+r 1) (C.42)

0

where

Z-Cbt Z+Cbt (C.43a,b)
q, 1(3yt)1 13 ,'2 =  3t)/

and -y is defined in Eq. C.37. In this form F1 and F2 can be recognized as

integrals of Airy's integral

00

Ai(qn) jcos(qn7+n3/3)dn (C.44)

Thus we can rewrite the expressions for F1 and F2 as

ql

F1 = f+i(s)d + (C.45)60

q2

F2 = JAi(s)ds + (C.46)

0
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where the 1/6 terms enter as the values for F1 and F2 for

q, = 0 and q2 = 0, respectively.
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D.1 Developing an Axisymmetric Finite Element

The equations for the strain-displacement (u,v,w) and stress-strain

relationships expressed in cylindrical coordinates (r,e,z) were developed

aid presented in Appendix A. These relationships can be derived for the

axisymmetric case by setting v and any derivatives with respect to 0

equal to zero. The strain-displacement equations then become

au = -, =r Ez = aw (D. 1 a,b,c)

and

a u M( .
,rz = 2erz = - + (D.2)

The stress-strain relationships are given in matrix form by

1 X+2 X o| (D.3)

,rZ X +2Po / Ez

or in matrix notation

= Dc (D.4)
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Now define a two-dimensional, 4-node, linear, finite element (see Figure

D.1) where the z-axis corresponds to the central axis of the cylindrical

specimen and the r-axis is perpendicular to it. The nodes are numbered

1 to 4, counter-clockwise from the lower left and rl, r2, zj and z2 are the

global coordinates corresponding to the sides of element.

If u is the displacement in the r-direction and w is the displacement

in the z direction we can define

U = f1U1 + f2 U2 + f3 u3 + f4u4 (D.5)

and

w fIW1 + f2w2 + f3 w3 + f4w4  (D.6)

where fn are prescribed int( rpolation functions and Un and wn are the

respective nodal displacements. In matrix form these are

0 1
Wl

JulI FflOf2Of3Of4Ol W2 (D.7)
= LOfl0f 2 0f 3 0f 4 J u3

W3
U4
W4)
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z

w
3

a)z 2 - 4 - 3 U 3

2 1431

r r
12

(0,1) -4

b) ..-

(1,0)

Figure D.1. Description of Finite Element Coordinate System; (a)
Global Coordinates, and (b) Local Coordinates.
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or in matrix notation

w j=NT U (D. 8)

For a linear element the interpolation functions, fn, can be defined

= (r2-r' (z 2 -z> _ 1

, Ar Az 4(1- )(1-"j) (D.9a)

f= (r-rl (Z2-Z)= 1 (.9bf ,rAzz Jl (1 + 7) (1- r) (D.9b)

(rp-r z 1Ar AZ 4 (1)(l+l) (D.9d)
f4 r 6 Z'=- (1- )(1 )D.d

where

Ar= r2 - rl and AZ=z2-Zl (D.9e,f)

and 71 represent local variables relative to the center of a particular

element as illustrated in Figure D.1 such that,

r=rl ( ) +r 2  2 -1 < 1 (D.1Oa)

2 2
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and

Z -Z1 2 + Z2( +j.Ti~ (D.l1Ob)

and
Ar AZ

dr =-2dc clz T clri (D. I Ia,b)

By denoting the partial derivatives Of fn with respect to r and with respect

to z as f'nr and f'n, respectively, we can determine using the chain rule

~'r=dfn dfn d4 dfn 2 (D. 12)

and
dfn dfn dTI dfn ,2~

f'nz dzdfd df ) (D. 13)

The derivatives of the interpolation functions then become

2Ar 2Az

f2r =-i-(1 - TI), f'2z = - -(1 +4 (D. 14c,d)
2Ar 2Az

f3r = 1(1 + nI), f 3z = 1(1 +4 (D. 14e,f)
2Ar 2Az
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1 1
f'4r ( + 1), f'4z - (1 -). (D.14g,h)

2Ar 2Az

It is now possible to write the strain-displacement equations given in

Eq. D.1 using the interpolation functions and their partial derivatives.

These are then

1
Er= f'nrUn e fnUn , = f'nzWn, (D. 1 5a,b,c)

and

Yrz f'nzun + f'nrWn. (D.16)

Equations D.15 and D.16 can be combined in matrix form

Ef f'l r 0 f'2r 0 f'3r 0 'r 0 w ( 1

Ll0 0 032 0 W2

0Z r rz U3 (D. 17)0z =LO 0. '0z 0 0. f04z W3
rz L fzf1 r f2z f'2r f'3z f3r f4z f'4r - UjU4

.W4 ,

which in matrix notation is

E = B U (D.18)

To form the element stiffness matrix, it is first noted that
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= Dc = DBU (D.19)

and

T UT BT (D.20)

If the equations of motions for this element are stated in matrix form they

are

M U + KU = P (D.21)

where

M = element mass matrix,

K = element stiffness matrix,

U = nodal displacement matrix,

U = nodal acceleration matrix, and

P = external forcing functions.

For steady state motions equation D.21 can be rewritten a!

P = (K - w2 M) U (D.22)

By virtue of the conservation of work, we have
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8UT p = 8UT K - )25UT M U (D.23)

Also, the internal work in the element is given by

8W = j 5ETC = j D = T DuT BT D B U (D.24)

It is then obvious from equations D.23 and D.24 that the element stiffness

matrix is given by

K=JBT D B dV (D.25)

which in global cylindrical coordinates is given by

2n z2 r2

K= J f fBT D B r drdzdO (D.26)

In local coordinates, the axisymmetric case becomes

AAz 1 1

K = 2n ( -) j BTD B rd drl . (D.27)

It can be shown similarly the element mass matrix can be determined in

local coordinates by
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( r 1 1

K = 2 ~ fN NT r d~dii , (D.28)

where NT is the matrix of interpolation functions defined in equation D.7.

For the purpose of numerical computation, the integrals in equations

D.27 and D.28 can be replaced by the following summation

1 1

f - d dr= Ai A( (D. 2 9)

where Aj, Aj are the appropriate constants from the quadratUre formula.

The resulting element matrices are 8x8, which corresponds to the four

nodes multiplied by the two degrees of freedom at each node.
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E.1 Equipment Used in the Multi-Moduli Testing Device

1. Specimen Confinement System

Componea Purse Manufacturer
Pressure Regulator To control air supply to Fairchild M30

axial air piston and pressure regulator

confinement cell

Vacuum Regulator To control internal Farchild M30 vacuum
specimen vacuum regulator

Pressure/Vacuum To measure chamber Validyne DP15
Transducer pressure and pressure transducer

specimen vacuum

Multichannel Carrier To input excitation Validyne CD 280

Demodulator signals to pressure

transducer for

conditioning
Proximeter Probe To measure changes Bentley-Nevada 7200

11-mm diameter in length Series

Proximiter Conditioner To condition the Bentley-Nevada
probe signa 19048-00-10-05-02

Load Cell To measure axial load Lebow M3397 w/ 50 or
300 lb capacity

DC Power Amplifier To amplify load cell NEFF Model 128
signal

Voltmeter To read output from HP 3478 Multimeter
load cell, proximiters
and transducers

DC Power Supply To power Load Cell LAMDA power supply
and Proximiters M-LL-902
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2. Dynamic Excitation System

Comonent Purose Manufacturer
Piezoelectric Vibration To provide transient Wilcoxon Research

Generator (Shaker) and steady-state F7 Shaker

longitudinal excitation

Power Amplifier To amplify input Wilcoxon Research

signals to shaker PA8

Matching Network To balance Wilcoxon Research
impedance of shaker N8HF

Transverse Shear To generate shear MDL
Wave Exciter waves in the specimen

Power To amplify signal to HP 6825A

Supply/Amplifier shear wave exciter

Function Generator To supply excitation HP 3314A

signal for shear wave

I exciter and shaker

3. Dynamic Monitoring System

Component __

Low Impedance, High To measure dynamic Wilcoxon Research

output Accelerometer motion of specimen 736

High Impedance To measure dynamic Wilcoxon Research

Charge Accelerometer motion of specimen 111A
Power Unit/Amplifier To provide DC power Wilcoxon Research

to accelerometers P702
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3. Dynamic Monitoring System (continued)

Comoonenturose E Manufacturer

In-Line Charge To convert high Wilcoxon Research

Converter impedance charge CC701

output to low
impedance voltage

signal (for 111 A)
Line adapter To provide DC power Wilcoxon Research

to P702 amplifiers LA703

Digital Recording To capture, store and Tektronix 11401

Oscilloscope analyze time records

for pulse tests

Dynamic Signal To control and HP 3562A
Analyzer measure frequency

response

Computer To control transfer and HP + 200 series

(Test Con' -I) storage of pulse time desktop

records microcomputer

Disc Drive To store programs and HP 9133D Winchester

data files disc or HP 9122D disc

drive

Printer To make hardcopies IBM Proprinter or HP
copies of oscilloscope 82906A graphic
records and print data printer

and results

Plotter To plot time and HP 7475A or HP
frequency records 7470A plotter

Computer To perform data IBM AT or equivalent
(Data Reduction) reduction
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F.1 Preparation of a Sand Sample

1. Collect the following items needed to construct a sand sample.
Filter paper

Scissors

Super glue
Latex membrane

A ruler

Vacuum grease

O-rings

O-ring spreader

Sample mold with fittings
A small level

3/16 in. allen wrench
Pluviating device with appropriate screens

Vacuum source and gage

Sand

Beaker, 1 liter
A scale accurate to + 0.1 grams

Erlenmeyer flask, 1 liter
Initial data sheet

Steel straight edge
The top cap assembly

Yard stick

2. Make sure that the shaker is mounted properly in the base of the test

cell, that the sample base pedestal is installed properly, and has been

cleaned.

3. Cut two small circles of filter paper approximately 1/4 in. in diameter

and tack one over each hole in the sample base pedestal using one or

two drops of super glue.
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4. Cut the membrane to a length of 8.3 in. (dictated by sample mold
size). Also, on the uncut end of the membrane, cut a small rectangular
notch approximately 1/4 in. into the membrane and 1 in. long.
5. Apply a small amount of vacuum grease around the sides of the base
pedestal. Stretch the uncut end of the membrane over the base pedestal
and align it so that the notch in the membrane spans the tapping plate for
the shear wave tapper. Carefully align the bottom of the membrane so
that it is even with the bottom edge of the base pedestal. If the notch in
the membrane is large enough, the shear tapper plate should be
exposed and there should be a small 1/4 square inch area of the base
exposed next to it. This is where the base horizontal accelerometer will
be glued.
6. Install an O-ring on the base over the membrane using an O-ring
spreader.
7. Disassemble the sample mold and apply vacuum grease to the two
sides where they touch. Be sure to clean any excess vacuum grease
from the inside of the mold. Now assemble the two halves of the mold
around the base and the membrane. Be careful that the membrane is not
pinched between the two halves of the mold and that the O-ring on the
base fits snugly into the groove for it in the mold. Finger tighten the four
bolts holding the two halves of the mold together.
8. Using a small level adjust thp legs of the mold to level the mold.
9. When the mold is level, tigh,,n the bolts using the 3/16 allen wrench.
10. Carefully pull the membrane up and fold it over the top of the mold,
ensuring there are no wrinkles in the membrane inside the mold.
11. Fit the aluminum capture ring from the pluviating device over the top
of the mold and membrane.
12. Attach the vacuum source to the ports on the side of the mold and
draw a 1.0-1.5 psi vacuum, ensuring that the membrane is pulled
smoothly against the sides of the mold. Again check to see there are no
wrinkles in the membrane.
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13. Recheck the level at the top of the mold before installing the
pluviating column.

14. Set up the pluviating column on top of the sample mold. Begin by
putting the acrylic base alignment ring over the aluminum capture ring on

top of the sample mold. Continue assembling the pluviating device with
the bottom free-fall section, the sieve stack and the top free-fall section on
top of the sample mold. Ensure that the sieves in the sieve stack have

been oriented at 45 degrees to each other and that the correct size
sieves are installed to achieve the desired density.

15. Install the funnel on the top of the pluviating column and insert the

funnel opening (plastic insert) that will give the desired density. For high

relative densities, use a small funnel opening, and for low relative
densities use a large funnel opening.
16. Place sand in the liter beaker and weigh. Also weigh the

Erlenmeyer flask. Record these weights on the initial data sheet.
17. Pour the sand from the liter beaker into the funnel, ensuring that it

doesn't fall through by first stopping the hole.

18. When ready, remove the stopper and allow the sand to fall. After
pouring the sand into the funnel, weigh the beaker again and record this
weight on the initial data sheet.

19. When the sand has completed falling into the mold, there should be
1-2 inches of sand above the top of the mold inside the pluviating

column.
20. Start disassembling the pluviating column. Connect the Erlenmeyer
flask to the vacuum source. (It is possible to disconnect the vacuum to the

sample mold at this time.) Disassemble the pluviating column one piece

at a time being sure to capture all the loose sand with the vacuum in the
Erlenmeyer flask. When removing the sieves it is convenient to

reassemble them in reverse order, so that they are ready to use for the

next sample construction. Before removing the bottom free-fall section of

the pluviating column, remove the excess sand to within about 1/2 in. of

the top of the mold. After removing the free fall section, carefully vacuum
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the remaining sand on the top of the mold down to just above the top
surface of the mold and remove the acrylic alignment ring. Again, be
careful to capture all loose sand with the vacuum. Now, carefully remove
the aluminum capture ring.
21. Using the steel straight edge, carefully strike off the top of the sand
sample, capturing any excess sand with the vacuum.
22. Ensure that the top cap has been assembled with the necessary
accelerometers and mounts. The horizontal accelerometers should align
with the bolt holes in the top cap. Apply a light layer of vacuum grease to
the sides of the top cap.
23. Carefully place the top cap on top of the sand in the mold. Align it,
using a yard stick, between the two vertical connecting rods on either
side so that the horizontal accelerometers are aligned with the mounting
location for the shear wave source.
24. Inch the membrane up along the sides of the top cap, being careful
not to rock the top cap excessively, and making sure that the membrane
is smooth along the side surface of the top cap.
25. Install an O-ring on the top cap using the O-ring spreader.
26. Attach the vacuum to the ports in the base of the sample base. Then
apply a 1.5 to 2.0 psi vacuum to the sample. With the sample under a
vacuum, remove the bolts connecting the mold and carefully remove the
mold without disturbing the sample.
27. Ensure that all spilt sand is collected with the vacuum. Weigh the
Erlenmeyer flask and record the weight on the initial data sheet.
28. Add a second O-ring to the top and the bottom of the sample using
the O-ring spreader. This completes the construction of the sample.
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F.2 Assembling the MTD and Preparing a Sample for
Test

1. To start, collect the following items:

Digital calipers
Pi tape
A large adjustable wrench
Vacuum grease
Allen wrenches (sizes 3/32, 9/64, and 5/32)
Super glue
Cotton swabs
Equipment listed in Appendix E

2. The following equipment should be calibrated ahead of time: the two
proximiters, the load cell, the pressure transducer, and the vacuum
transducer.
3. To measure the initial dimensions of the sample, increase the internal
vacuum in the sample to 3.5 psi. Measure the length between the top
and the bottom caps on opposing sides of the sample using the digital
calipers and average the two measurements for the initial length. Using
the Pi tape, measure the diameter at a minimum of three locations along
the sample and average the measurements for the initial diameter, being
sure to subtract twice the membrane thickness. Note the pressure on th.
sample indicated by the vacuum transducer so that it is possible to return
the sample to this pressure at a later time during the setup procedur,.
4. Glue the horizontal accelerometer next to the tapper shield or' the side
of the base pedestal. It may be necessary to trim the membrane slightly
to make sure that it will glue securely to the base.
5. Install the shear wave tapper. Mount the shear wave 'apper so that it
is aligned with the horizontal accelerometers on the top cap.
6. Very carefully install the top vibration isolation -issembly, ensuring that
the proximiter targets align with the proximiter locations. Very carefully
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install and tighten the cap screws that attach the vibration isolation
assembly to the top cap using the 9/64 allen wrench. Be careful not to

twist the top of the sample.

7. Attach the three internal accelerometer cables to the top three

accelerometers. Make sure that they are tightened securely.

8. Install the proximiters in their proximiter mounts. Screw the mounts to

the base plate of the cell and adjust the proximiters so that they are

centered in the middle of the targets on the top cap assembly. Use the

3/32 allen wrench to space the proximiter from the target. This should

give an initial reading of -8 to -9 volts.

9. Connect all of the proximiters and the accelerometers to their

appropriate amplifiers and determine that they are operating properly.
Also check that the shear wave tapper is operating.

10. Disconnect all of the connected proximiters and accelerometers.

Clean the O-ring groove (for cell casing) in the base plate using cotton
swabs.

11. Install the acrylic wire guard around the sample by carefully lowering

it down around the sample and feeding the bottom wires through the
holes in the bottom of the guard.

12. Apply a liberal amount of vacuum grease to the O-ring groove in the

base plate. It is convenient to tie all loose accelerometer cables in a

bundle and carefully rest them on the vibration isolation assembly on top

of the sample. Lower the cell casing down around the wire guard being

sure not to damage any of the wires.

13. With the cell case in place, drape all of the wires from the bottom and

the top accelerometers over the top of the cell casing. Also, work the
proximiter leads into a position where they can be easily reached. Feed

the top accelerometer leads through the holes in the top of the wire

guard.
15. Note the zero reading for the load cell and install it on top of the
vibration isolation assembly. Also install the gimble joint on top of the
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load cell. Screw both down snugly but be careful not to push down on, or

twist, the top of the sample.
16. Lift the top plate onto the top of the cell and prop it on the upright
connecting rods.
17. Attach all of the internal cables to the feedthrus in the top plate. Also,

connect the internal proximiter and the load cell cables to the cables
passing through the fittings in the top plate.
18. Connect all of the external leads to the outside of the top plate. Test
each of the accelerometers and proximiters again to make sure that they
are operating.
19. Extend the shaft on the axial air piston and screw it down into the

connecting rod on top of the gimble joint.

20. Having ensured that all sensors are working properly, liberally
grease the top of the cell casing and carefully lower the top plate onto the

container cell.
21. Carefully lower the piston and screw it down into the mount on the
top plate.
22. Before tightening down the nuts securing the top plate, again test all
of the accelerometers and proximiters and other instruments.
23. Tighten the nuts on the top evenly so that it does not warp the top
plate.
24. Connect the pressure panel to the pressure cell and the two ends of

the axial loading piston.
25. Incrementally decrease the vacuum in the sample and increase the
pressure in the test cell in 0.5 psi steps until the cell pressure is at 3.5 psi,

or at the same pressure used initially when the height of the sample was
measured. When the vacuum has been reduced to atmospheric
pressure, disconnect the line and open the vacuum port in the base
plate.

26. Record the initial reading for the two proximiters.
These steps complete the setting up of the test cell and the

preparation for a test series.
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F.3 Beginning a Test Series in the MTD and

Conducting Tests at a Single Stress State

1. Decide on the stress state for each test step in the test series. Having

chosen the desired stress states, prepare a transducer reading

calculation sheet. This sheet will give the transducer readings for the
pressure transducer and the load cell for each test step in the test series.

2. From the preparation pressure, in this case 3.5 psi, adjust the cell

pressure and the axial loading piston until the readings from the pressure

transducer and load cell equal those on the transducer calculation sheet

for the first test step. All tests in this study started at 4 psi cell pressure.

After adjusting the cell pressure and the pressure in the axial piston to

get the correct load cell readings for the desired stress state, record the

time, the pressure transducer reading, the load cell reading, and the

reading on the two proximiters at the beginning of the test step.

F.3.1 Conducting the Axial Pulse Test.

1. Connect the base and top vertical accelerometers to two channels on

the digital recording oscilloscope. (See Fig. 5.9) Connect the shaker

amplifier to the function generator (See Fig. 5.5.) and recall the preset

settings saved in the scope and the function generator for the axial pulse

test. The typical settings for the function generator to conduct an axial

pulse test in sand are listed in Table F.1. Also, note at the beginning of

the test, the amplification settings of the accelerometer amplifiers. When

multiplied by the accelerometer constant, these will be the accelerometer

constant requested when the wave forms are saved to disk storage.

2. Activate the internal trigger on the function generator and adjust the

oscilloscope so that two clear signals are observed for the bottom and

the top vertical accelerometers. The oscilloscope should make the
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Table F.1. Typical Settings for the Function Generator to Conduct an
Axial Pulse Test on Sand.

Frequency 2 kHz

Amplitude 0.100 V

Offset 0.00 V

Symmetry 50%
Phase -90.0 deg

Number 001
Trigger Interval 100 ms

Trigger Internal
Mode 1/2 Cycle

Wave Square

prescribed number of averages and stop. (128 averages were used in

this test program.)
3. Store the two recorded wave forms in the first and second internal

storage locations of the oscilloscope.
4. Turn off the internal trigger on the function generator.
5. To permanently store the recorded wave forms for the axial pulse test,

load the PSAVE storage program into the active bank of the computer

and execute. The program will ask you for the name and the storage
location for the file in which to store the wave forms. It will then request

the accelerometer constants for each of the accelerometers. The
computer will transfer the wave forms and necessary wave form data in

storage locations 1 and 2 of the oscilloscope and put them in the file that
has been identified on the mass storage unit. The source code for
PSAVE, which is written in HP Basic®, is provided in Fig. F.1 at the end

of this appendix.

6. The final step in the axial pulse test is to determine the compression
wave travel time. To accomplish this, clear the oscilloscope screen, and
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recall the waves stored in storage locations 1 and 2. Then, using the

cursor functions it is possible to determine the travel time between the
two accelerometers in the sample. Record the travel time on the test data

sheet. Calculation of the P-wave velocity is in accordance with the

procedures outlined in Chapter 6.

F.3.2 Conducting the Shear Pulse Test.

1. Connect the base and two top horizontal accelerometers to three

channels on the digital recording oscilloscope. (See Fig. 5.9) Connect

the shear wave tapper to the function generator (See Fig. 5.7.) and recall

the preset settings saved in the scope and the function generator.

TvDical settings for the function generator to conduct a shear pulse test in

sand are listed in Table F.2. Also, note at the beginning of the test, the

amplification settings of the accelerometer amplifiers, which when

multiplied by the accelerometer constant will be the accelerometer

constants requested when the wave forms are saved to disk storage.
2. Hold down the off/on button and adjust the oscilloscope so that three

clear signals are observed for the bottom and two top horizontal

accelerometers. The oscilloscope should make the prescribed number

of averages and stop. (64 averages were used in this test program.)
3. Release the off/on button when the oscilloscope stops.

4. Store the three wave forms in the third, fourth, and fifth internal storage

locations of the oscilloscope.

5. To permanently store the recorded wave forms for the shear pulse

test, load the SSAVE storage program into the active bank of the

computer and execute. The program will ask you for the name and the

storage location for the file in which to store the wave forms. It will then
request the accelerometer constants for each of the accelerometers. The

computer will transfer the wave forms and necessary wave form data in
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Table F.2. Typical Settings for the Function Generator to Conduct a

Shear Pulse Test on Sand.

Frequency 5 Hz

Amplitude 5 V
Offset 0.00 V

Symmetry 50%
Phase -90.0 deg

Number 001
Trigger Interval N/A

Trigger N/A

Mode Free Run
Wave Square

storage locations 3, 4, and 5 of the oscilloscope and put them in the file

that you have identified on the mass storage unit.
6. The final step in the shear pulse test is to determine the shear wave
travel time. To accomplish this, clear the oscilloscope screen, and recall
the waves stored in storage locations 3, 4, and 5. Then, using the the

cursor functions, it is possible to determine the travel time between the
bottom and top accelerometers. Record the travel time on test data
sheet. Calculation of the shear wave velocity is in accordance with the
procedures outlined in Chapter 6.

F.3.3 Conducting the Longitudinal Resonant

Column (LRC) Test

1. Connect the base and top vertics' accelerometers to channels 1 and 2
of the Dynamic Signal Analyzer (DSA), respectively (See Fig. 5.10).
Connect the shaker amplifier to the internal source of the DSA. Recall
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the preset settings saved in the DSA for the LRC test as prescribed by

Table 7.1. Note the amplification settings and determine the

accelerometer constants for each accelerometer. Ensure the
"engineering units valves" for each channel of DSA are set to the correct

accelerometer constants.

2. Begin the frequency sveep. While the frequency sweep is being

accomplished by the DSA, the operator can be determining the P-wave

and S-wave travel times for the axial and shear pulse tests.
3. When the DSA has completed the frequency sweep, lab~el the trace

and store the frequency response and coherence on disk storage.
4. While the sweep is being conducted, the opcrator can be identifying

and recording the natural frequencies of the specimen on the test data

sheet. Calculation of the bar wave velocity is in accordance with the

procedures outlined in Chapter 7.

F.4 Completing Tests at a Single Stress-State

1. After completing the axial and shear pulse tests and the longitudinal

resonant column tests, again record the time and the readings from the

pressure transducer, load cell, and two proximiters.

2. Check the transducer calculation sheet and adjust the cell pressure
and axial air piston for the next stress state. Repeat until the last stress

state is complete.

F.5 Reducing the Lab Data

1. All the manually recorded data for each test step in a test series is

entered into a computer using an interactive program that automatically

builds an input file that is read by the data reduction program. That
program is called RCLIN and the source code is includ'd in Fig. F.2. at
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the end of this Appendix. The input program will first request initial test

data which was recorded on the initial data sheets. It then requests test
data for each test step in the test series, in sequential order.
2. When the input file is complete, the operator executes the data
reduction file, RCL, which reads the input file and computes the wave
velocities and moduli in accordance with the methods described in
Chapter 6 and Chapter 7. The output from the program is an individual,
one page summary for individual tests at each stress state in a test series
and an overall summary of the moduli measured during the test series.
An example of an individual stress state summary was given in Fig. 7.4

and test series summaries for the sand and clay can be found in
Appendix G. The source code for the data reduction program is included
in Fig. F.3 at the end of this Appendix.

F.6 Dismantling the MTD

1. When a test series is complete, reduce the cell pressure and increase
the vacuum in the specimen (which has been reconnected) in 0.5 psi
increments until the cell pressure is zero and the vacuum is at 3.5 psi or
4.0 psi. Open the cell pressure port to the atmosphere and disconnect

the pressure lines to the axial load piston.
2. Disconnect all external sensor leads to the top plate and remove the
retaining nuts.

3. Carefully lift the top plate and prop it on top of the connecting rods.
Wipe off any excess vacuum grease.
4. Unscrew the axial load piston and remove.

5. Disconnect all internal sensor leads to the top plate and remove the
top plate.

6. Unscrew gimble joint and load cell and remove.
7. Carefully coil loose cables on top of vibration isolation assembly.
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8. Remove cell casing and wipe off any excess vacuum grease.

9. Disconnect the accelerometer leads from the top accelerometers.

10. Carefully remove acrylic wire guard, feeding cables back through

holes in bottom.

11. Remove proximiters and their mounts.

12. Loosen cap screws and remove vibration isolation assembly from the

top cap.

13. Remove shear wave tapper.

14. Reduce vacuum to zero and carefully remove top cap. The sand

sample will stand in the membrane without a vacuum. Scoop sand from

membrane into beaker, taking three 100 -150 gram samples for

determining the moisture content.

15. Vacuum any excess sand into the Erlenmeyer flask and clean

vacuum grease from top and bottom plates and the sample base

pedestal.
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OPTION BASE I
CLEAR 7
PRINT "PROGRAM TO SAVE PULSE TEST WAVEFORMS"
PRINT * "

INPUT "INPUT FILE NAME TO SAVE P-WAVE DATA TO:".FS
PRINT " "

PRINT "DESTINATION STORAGE ADDRESSES"
PRINT " (1) FLEXIBLE DISC - :,706,0"
PRINT " (2) HARD DISC - *,700,0"

PRINT " (3) HP INTERNAL - :INTERNAL,4.0"
PRINT " (4) OTHER"
INPUT "SELECT DESTINATION DEVICE: ",Save$

SELECT Saves
CASE "1"

F$=F$&:.70G,0"
CASE "2"

FS-F$&":,700,@"
CASE "3"

F$=F$&":INTERNAL,4,0"

CASE ELSE
INPUT "ENTER DESTINATION DEVICE: ",D'

F$=F$&DevS
END SELECT
ON ERROR GOTO Err

INPUT "ENTER ACCELEROMETER CONSTANT FOR WAVEFORM IN STOl(Volts/G):",Accl

INPUT "ENTER ACCELEROMETER CONSTANT FOR WAVEFORM IN ST02(Volts/G):".Acc2

PRINT " "

PRINT "&'*. INSERT STORAGE DISK, HIT CONTINUE *..."

PAUSE
ASSIGN @Tek TO 716
ASSIGN @Telbin TO 716;FORMAT OFF
PRINT "..
PRINT "TRANSFERRING WAVEFORM IN ST01"
OUTPUT @Tek;"ENCDG WAVFRM:BIN;BYT.OR MSB"
OUTPUT @Tek;"OUTPUT STO1"
OUTPUT @Tek;"CURVE?"
ENTER @Tek USING ",7A.W"iHeadS,Bytcnt
Nrptl=(Bytcnt-1)/2
ALLOCATE INTEGER A(I:Nrptl)

ENTER @TekbiniA(*)
ENTER @Tek USING "*"eCkaum
OUTPUT *Teko*WFMPRE? YMULTYZERO,XZEROXINCR"

ENTER @TeiYmuI1,YzerlXzerl,Xincl
PRINT

Fig. F.1. Source Code for Saving Axial Pulse Test Wave Forms -

PSAVE.
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PRINT "TRANSFERRING WAVEFORM IN STO2"
OUTPUT @Tekg'ENCDG WAVFRM:BINiBYT.OR MSB"
OUTPUT *Tekg*OUTPUT STO2"
OUTPUT *Tekg "CURVE?*
ENTER @Tek USING "*,7A,W;jHeadSBytcnt
Nr~pt2-(Bytcnt-1 )12
ALLOCATE INTEGER B(1:Nr..pt2)
ENTER *Tekbini8(*)
ENTER @Tek USING "B"iCksum
OUTPUT @Teki"WFMPRE? YMULT ,YZERO,XZERO,XINCR*
ENTER STek ;Yi'u12 ,Yzer2 ,Xzer2 ,Xinc2
CREATE BDAT F$.2 ,2.6*8+2*(Nrptl+Nrpt2)
ASSIGN @Dest TO FS;FORMAT OFF
OUTPUT SDestiAcci *Ymu11 Yzeri *Xzerl ,Xincl *NrptI
OUTPUT *DesttA(*)
OUTPUT *Dest gAcc2 ,Ymul2 ,Yzer2 ,Xzer2 ,Xinc2 ,Nr-pt2
OUTPUT @DestiB(')
PRINT""
PRINT "*****# TRANSFER TO "iF6;* COMPLETE .'"

GOTO 680
Err: OFF ERROR

IF ERRN-S4 THEN
INPUT "FILE EXISTS1 OVERWRITE? (YorN):*,Q$
IF QS-*N" THEN GOTO S0
PURGE F$

END IF
GOTO 520

DEALLOCATE A(o) * *
END

Fig. F.1. Source Code for Saving Axial Pulse Test Wave Forms -

PSAVE(conti nued).



372

C******PROGRAM TO BUILD INPUT DATA FILE FOR RCL TEST....
C

IMPLICIT REALB8(A-H,O-Z)
CHARACTER*5O TESTID
INTEGER UNITI ,O

C
UNIT1=9
OPEN(UNIT1 ,FILE=' ',STATUS-'UNKNOWN-)
WRITE(6,)IS THIS A NEW INPUT FILE? (1 -YES,O-NO):'
READ(5,-)Q
IF(O.EQ.0)THEN

REWIND UNIT1
READ(UNIT1 ,)TESTID
CALL ENFIL(UNITI)
BACKSPACE UNITi
READ(UNIT1 ,')ITEST
GOTO 100

ENDIF
WRITE(6,5)

5 FORMAT(1X7HIS IS A NEW INPUT FILE. YOU WILL HAVE TO ENTER',
-TEST CONSTANTS FIRST.V)/1X,'ENTER TEST NAME & DATES:')
READ(5,-)TESTID
WRiTE(UNIT ,')TESTID
WRITE(6,Y)ENTER SAMPLE WEIGHT(gram):'
READ(5,-)WT
WRITE(UNIT1 ,)WT
WRITE(6,')'ENTER INITIAL SAM PLE LENGTH(in) AND DIAMETER(in):'
READ(5,')Z,D
WRITE(UN[T1 ,')Z,D
WRITE(6,')'ENTER SAMPLE SPECIFIC GRAVITY AND WATER CONTENT'
READ(5,-)GS,WC
WRITE(UNIT1 *)GSWC
WRITE(6,')'ENTER POISSON'S RATIO FOR VOLUME CHANGE COMPUTATION'
READ(5,')PR
WRITE(UNIT ,-)PR
WRITE(6,')ENTER ADDED MASS OF TOP CAP(gram):'
READ(5,')WM
WRtTE(UNriT,-)WM
WRITE(6,')'ENTER MASS OF TOP CAP LOAD FRAME(gram):'
READ(5,')WF
WRITE(UNIT1 ,)WF
WRITE(6,')'ENTER P-WAVE DELAYrucrosec):'
READ(5,-)PD
WRITE(UN[T ,')PD
WRITE(6,')'ENTER S-WAVE DELAY(Microsec):'
READ(5,')SD

Fig. F.2. Source Code to Build Lab Data File - RCLIN.
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WRITE(6,y)ENTER PRESSURENVACUUM TRANSDUCER CONSTANT(psi/vohy',
*& ZERO READING(vofts):'
READ(5.')PTC.PTZER0
WRITE(UNIT1 ,)PTC,PTZERO
WRITE(6,-)'ENTER AXIAL LOAD CELL CONSTANT(Ibstvoft)',
*& ZERO READING(voft):'
READ(5,')ALC,ALCZERO
WRITE(UNFT1 ,')ALCALCZERO
WRITE(6,')'ENTER PROXIM ITER #2 CONSTANT(in/voft)',
**& INITIAL READING'
READ(5,-)PX2C,PX21
WRITE(UNIT1 ,)PX2CPX2I
WRITE(6,')'ENTER PROXIMITER #3 CONSTANT(irVvoft)',
*& INITIAL_ READING:'
READ(5,-)PX3C,PX3I
WRITE(UNIT1 ,')PX3C,PX3I
WRITE(UNIT ,-)ITEST
GOTO, 150

C
100 WRITE(6,')THIS IS AN INPUT FILE FOR - JESTID

WRITE(6,1 10) [TEST
110 FORMAT(I X, THE LAST DATA ENTERED WAS FOR TEST ',13,'.')

C
150 ITEST=ITEST+1

WRITE(6,200)ITEST
200 FORMAT(1 X,'ENTER DATA NOW FOR TEST ',13,'.')

WRITE(6,-)'ENTER TIME(hr) OF TEST FROM INITIAL START:*
READ(5,')TIME
WRITE(UNIT1 ,')TIM E
WRITE(6,')'ENTER PRESSURENVACUUM TRANSDUCER READING(voft):'
READ(,)PT
WRITE(UNIT1 ,')PT
WRITE(6,')'ENTER AXIAL LOAD CELL READING(volt):'
READ(5,')AL
WRITE(UNIT1 ,)AL
WRITE(6,')ENTER PROXIMITER #2 READING(voh):'
READ(5,')PX2
WRITE(UN[T ,')PX2
WRITE(6,')'ENTER PROXIMITER #3 READING(voh):'
READ(5,')PX3
WRrTE(UNIT ,-)PX3
WRITE(6,')'ENTER P-WAVE INTERVAL TIME(microsec):'
READ(5,)PW
WRrTE(UNIT1 ,)PW
WRITE(6,')'ENTER S-WAVE INTERVAL T1ME(rricrosec):'
READ(5,)SW
WRITE(UNIT1 , )SW
WRITE(6,')'ENTER NO. OF FIXED-FREE MODES MEASURED:'
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WRITE(6,*).ENTER NO. OF FIXED-FREE MODES MEASURED:*
READ(5,-IIC
WRITE(UNIT1 )IC
DO 250 1=1,10
WRrTE(6,240)1

240 FORMAT(1 X,'ENTER RESONANT FREOUENCY(Hz) FOR MODE '.13,':')
READ(5,')FX

250 WRITE(UNIT1,')FX
WRITE(UNIT1 )ITEST
WRITE(6,260) ITEST

260 FORMAT(1X,'YOU HAVE COMPLETED DATA ENTRY FOR TEST ',13,'.',
*/1 X,'DO YOU WISH TO ENTER DATA FOR ANOTHER TEST? (1 -YES,0-NO)
READ(6,-)O
IF(O.EQ.1)GOTO 150
END

C
C***** .. *SUBROUTINE TO ADVANCE TO END OF FILE .. ...
C

SUBROUTINE ENFIL(ID)
IMPLICIT REAU8S(A-H,O-Z)

C
100 1IF(.NOT. EOF(I D))TH EN

READ(ID,')FILL
GOTO 100

ENDIF
RETURN
END

Fig. F.2. Source Code to Build Lab Data File - RCLIN (continued).
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C.**********PROGRAM TO REDUCE LONG. RES. COL. DATA******
C

IMPLICIT REAL8B(A-H,O.Z)
CHARACTER*50 TESTID
DIMENSION TIM E(50),PT(50) ,AL(50), PX2(50) ,PX3(50) ,PW(50) ,SW(50)
DIMENSION BETA(1 0) ,IC(50),CP(50),CB(1 0,50) ,C(1 0,50) ,POS( 10,50)
DIMENSION CS(1 0,50) ,FX(1 0,50) ,CSW(50),G(1 0,50) ,PM(50),E(1 0,50)
DIMENSION GSW(50) ,SIGA(50) ,SIGC(50),SIGM(50),Z(50) ,D(50)
DIMENSION V(50),GAM(50),VR(50)
INTEGER UNITi ,UNIT
DATA PV3.141 59265358979/,UNIT1I9,UNIT/1 0/

C
C"R**** EAD IN PUT FILE ...........
C

OPEN(UN IT, ,FILE=' ',MODE='READ-)
REWIND UNITi
READ(UNIT1 ,')TESTID
READ(UNIT1 ,)WT
READ(UNrT ,')ZI,DI
READ(UNIT1 ,)GS,WC
READ(UN[T1 ,')PR
READ(UNIT1 ,)WM
READ(UNIT1 ,')WF
READ(UNIT1 ,')PD
READ(UNIT ,-)SD
READ(UNIT ,')PTC,PTZERO
READ(UNIT ,-)ALC,ALZERO
READ(UNIT1 ,)PX2C,PX2I
READ(UNIT1 ,)PX3C,PX3I
READ(UNIT1 )ITEST

10 I-ITEST+l
READ(UNIT ,-,END-=30)TIME(I)
READ(UNIT1 ,)PT(I)
READ(UNIT1 ,)AL(I)
READ(UNIT1 ,)PX2(I)
READ(UNIT ,-)PX3(I)
READ(UNIT1 ,)PW(I)
READ(UNIT1 ,)SW(I)
READ(UNIT1 ,')IC(I)
DO 20,J=1 ,IC(I)

20 READ(UNIT ,-)FX(J,I)
READ(UNIT ,-)ITEST
WRITE(6,')' JUST READ TEST ,ITEST
GOTO 10

30 CONTINUE
C
n"""C "CM PUTE VALUES FOR EACH TEST" "
C

Fig. F.3. Source Code for Lab Data Reduction Program - RCL
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CALL XFBETA(WTIWM .8ETA)
C

DO 30 1=1 ,ITEST
C

WRITE(6,y) COMPUTING TEST ,I
C
C'***COMPUTE DIMENSION AND STRESS CHANGE**"
C

SIGC(I)=(PT(I)-PTZERO)PTC
PL=ALC-(AL( I)-ALZERO)-SIGC(I)'0.1 9635
IF(Al-C.EO.0.0)PL-0.0
AS=DI*DI*PV4.0
SIGA(I)=-SIGC(I)+(PL+(WM+WF)/453.6)/AS

C
DZ=(PX2I-PX2(i))'PX2C/2.0+(PX31-PX3(I))*PX3C/2.O

Z(I)=(ZI-DZ)
IF(I.EQ.1 )THEN

DD*PR'DZ'D/Z(I)
D(1 )=DI-DD
GOTO 210

ENDIF
DL=(PX2(I-1 ).PX2(i))*PX2C/2.0+(PX3(I1 1)-PX3(I))*PX3C/2.O
DSIGA-=SIGA(I)-SIGA(I-1)
DSIGC=-SIGC(I)-SIGC(I-1)
IF(DABS(DSIGA-DSIGC).LE.0.5)THEN

DD=PR' DL'D(I-1 )Z(I)
GOTO 200

ELSEIF(DABS(DSIGA) .GE.DABS(DSIGC))THEN
DD-- .'PR'DVD(-1)/Z(I)
GOTO 200

ELSEI F(DABS(DSIGA) .LT. DABS (DSIGC))THEN
DD=- .tDL D(1-1)/Z( )/PR
GOTO 200

ENDIF
C

200 D(I).D(l-1)-DD
210 V(I).PI'D(I)T(I)*Z(I)/4.0/1 728.0

GAM(I)-WT/453.&'V(I)
A=aD(I)-D(I)'PV4.0
SIGA(I)=SIGC(I)+(PL+(WF+WM)/453.6)/AS
SIGM(I)=(SIGA(I)+2.*SIGC(I))/3.0
VRQl)=(62.43X(I.+WC)*GSGAM(l))- .0

C
ZFT=Z(I)/12.0
DFT=D(I)/1 2.0

C
C**********COM PUTE Vp AND S*

Fig. F.3. Source Code for Lab Data Reduction Program - RCL
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C
CP(I)-1 O00000.-ZFT/(PW(I)-PD)
CSW(I)=1 000000.*ZFT/(SW(l)-SD)
GSW(I)=G.AM()CSW(I)'CSW(1y32.1 7

C
C ******O************COMPUTE V *~
C

DO 300 J=1,IC(I)
C(J,I)-2.0PI*FX(J,I)2ZFTIBETA(J)
ZR=FX(J,I)'DFUIC(J,t)
IF(C(J,I).GT.CP(I))GOTO, 250

POI-DSQRT(B*B/4.+B)-Bl2.
225 CALL L-M1(ZR,POI,CR)

CB(J,I)-C(J,I)ICR
IF(CB{J,I).GT.CP(I))GOTO 250
B=-(CP(I)-CP(I)-CB(J,I)'CB(J,I))/2JCP()/CP()
POS(J, I)-DSORT(B*B/4.+B)-B/2,
IF(DABS(POS(J,I)-POI).LT.0.0001)GOTO 275
POI=POS(J,I)
GOTO 225

250 POS(J,I)=0.0

275 CS(J,I)=CB(J, l)/DSQRT(2.*(1.+POS(J;I)))
E(J,I)=GAM(I'CB(J,I)tCB(J,),32.1 7
G(J,I)=GAM()CS(J,I)-CS(J,)/32.1 7
PM(I)=GAM(I)CP(I)-CP()/32.1 7

300 CONTINUE
C
C" ****INDVI DUAL TEST OUTPUT** ***
C

OPEN(UNrr,FILE= '
DO 500 1=1 .ITEST

C
WRITE(UNIT,2)TESTD,I,TME(I)

2 FORMAT(A50,5X,TEST NO. ',13/55X, TIM E(hr) :,F6.2)
WRITE(UNrT,5)SIGA(I),SIGC(),SIGM().SIGA(I)/SIGCQl)

5 FORMAT(/IX,
*STRESSES:5X,'AXIAL - ',F10.2, psiVj5X,HORIZ..,
*FlO.2,'psi,/5X,'MEAN - ',Fl0.2,/5X,'KO -,3X,FIO.2)
WRITE(UNIT,15)Z(I),D(I),Wr/4,53.6,V(I),GAM(I),
GS,WC,VR(I),WM1453.6

15 FORMAT(I1 X,-SAMPLE PROPERTIES:'/SX,'HEIGHT (in) :,F1 0.4,
*/5X,'DIAMETER (in) :,FI 0.4,/5X,WEIGHT (Ib) :,F1 0.4,
*/5X,VOLUME (cf) :,F1 0.4,15X,'UNIT WT. (pci) :',F1 0.2,
I/5X,'SPECIFC GRAVITY:',FlO.3,/5X,'WATER CONTENT:',F10.6,
*1SX,'VOID RATIO:',F1 0.4,ISX,'ADDED MASS (Ib) :*,F 0.4j1)

Fig. F.3. Source Code for Lab Data Reduction Program - RCL
(continued).



378

WR[TE(UNIT,25)
25 FORMAT(/1 X,'MODE',2X,'fr(Hz)',4X,'C(fps)',4X,'Cb(fps)Y,

*3X,'Cp(fps)',2X,'POI. RAT.',2X,'Cs(fps)')
WRITE(UNIT,35)(J,FX(J,I) ,C(J,I),CB(J,I) ,CP(I),POS(J,I),
-CS(J,I),J=1 ,IC(I))

35 FORMAT(13,4F1 0.1 ,F1O.4,F1O.1)
WRITE(UNIT,45)

45 FORMAT(/1 X,'MODULI (psi) :V1 OX,'YOUNGS',8X,'CONSTRAINED',6X,
..SHEAR-)
WVRITE(UNIT,55)(J,E(J,I) ,P?%tl(),G(J,I) 4=.10(l))

55 FORMAT(13,3F1 5.0)
WRITE(UNIT,65)

65 FORMAT(/ X,'MODULI (psi) :',Il OXYOUNGS',8X,'CONSTRAI NED',
6X,'SHEAR')
WRITE(UNIT,75)(J,E(J,l)/1 44.,PM(l)/1 44.,G(J,l)/1 44.4J=1,IC(I))

75 FORMAT(13,3FI5.0)
WRITE(UNIT,85)CSW(I) ,GSW(l),GS W(I)/1 44.

85 FORMAT(//1 X,'INDEPENDENT SHEAR WAVE VELOCITY:',F9. 1,' tps',/1X,
*'INDEPENDENT SHEAR MODULUS:',FI 1.0,' psf',/1 X,
*'INDEPENDENT SHEAR MODULUS:',Fl1 .0.'psiy/f
DO 450 K=1,30-3-IC(I)

450 WRITE(UNIT,')
500 CONTINUE

C
C'''"""MO******MDULI SUMMARY OUPT" " "
C

DO 800 Jul ,IC(ITEST)
WRITE(UNIT,1 05)TESTID,J

105 FORMAT(//20X,A50,/25X,'TEST SUMMARY FOR MODE ',12,/27X,
"(ALL VALUES IN psi)')
WRITE(UNiT,1 15)J,J

115 FORMAT(//IX,'# SIGA SIGO SIGM VR PR',
' 6X,M',8X,'GM',6X,'E',I2,6X,'GB',12,I)

C
DO 7001=1 ,ITEST

C
WRITE(UNIT,1 25)1 ,SIGA(I) ,SIGC(I) ,SIGM(l),VR(I),
POS(J,I),PM(I)1144.,GSW(I)/1 44.,E(J,I)/1 44.,G(J,l)/1 44.

125 FORMAT(lX,I2,3F7.2,2F7.4,4F9.0)
700 CONTINUE
800 CONTINUE

C
C"" """""*****STRESS-STATE SUMMARY OUTPUT"""""""'***
C

WRITE(UNT1 35)TES11D
135 FOR MAT(//20X,AS0,/25X,'STR ESS-STATE SUMMARY ',/27X,

"(ALL VALUES IN psi)')

Fig. F.3. Source Code for Lab Data Reduction Program - RCL
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WRITE(UNIT,145)PR
145 FORMAT(/lX,'COMPUTATION FOR ASSUMED VALUE OF POISSONS',

'RATIO = ,1O.4)
WRITE(UNIT,1 55)

155 FORMAT(//1X, # VR SIGA SIGC 1(0 S1GM LENGTH',
DIAMETER GAMMAV)

C
DO 900 =1 ITEST

C
WRITE(UNIT,1 65)l,VR(I),SIGA(I),SIGC(I),SIGA(I)/SIGC(I),
-SIGM(I),ZQ),D(I),GAM(I)

165 FORMAT(1 X,12,F7.4,4F7.2,2F9.4,F9.2)
900 CONTINUE

END
C
C****SUB*PROG RAM TO CALCULATE BETA VALUES"'""'"""*
C

SUBROUTINE XFBETA(WR,B)
IMPLICIT REAL'8(A-H,O-Z)
DIMENSION B(1 0)
P1=3.14159265358979

DO040 1=1,1 0
D=(I-1 )P1+0.00000001
DW=O.1

10 D1=D+DW
IF(Dl.GE.(2*I.1)PI2)GOTO 20
W=DlVDTAN(D1)
SUM=WR-W
IF(DABS(SUM).LE.0.000001)GOTO 40
IF(SUM)20,20,30

20 DW=DW/2.
GOTO 10

30 D-DI
GOTOI10

40 B(I)=D
RETURN
END

C
C'""SUBPROGRAM TO CALCULATE CICb RATIO OF 1ST MODE..
C

SUBROUTINE LMI(AK,POI,W1)
IMPLICIT REAL'8(A-H,O-Z)
G2-0.5/(1 .+POI)
A2-(1.-POI)/(1.+POI)/(1.-2.*POI)
CTB=-DSORT(G2)
CRT-(0.862+1 .14*P01)/(1 .+POI)
CLB=DSORT(A2)
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CLT-CLB/CTB
CRB=CRT*CTB
AK2=AK*AK
W=-CRB
CALL SUMP(SUMAWG2,A2,AK2)
DW=0.1 'PCI

10 W1 =W+DW
IF(DW.LE.0.00001 )GOTO 60
CALL SUMP(SUM1 ,W1 ,G2,A2,AK2)
IF(SUM'SUM1 )40,50,50

40 DW=DW/2.
GOTO 10

50 SUM=SUM1
w=w1
GOTO1O

60 CONTINUE
RETURN
END

C
C*******BESSEL FUNCTION, 1 ST KIND, ORDER ZERO ......
C

SUBROUTINE BESJO(X,Y)
IMPLICIT REAL'8(A-H,O-Z)
X2=X'X/4
DY=-X2
Y=1 +DY
M=0O

10 M=M+1
AN=M+l
AN2=AN*AN
DY--i .DYX2/AN2

Y=Y+DY
IF(DABS(DY/Y).GT.1 .E-06)GOTO 10
RETURN
END

C
C"****'*BESSEL FUNCTION, 1IST KIND, ORDER ONE"""'
C

SUBROUTINE BESJ1 (X,Y)
IMPLICrIT REAL'8(A-H,O-Z)
X2=X*XI4
AM=1.
SUM-AM
M=0O

10 M=M.1
DM-M*(M+I)
AM--AM*X2/DM
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SUM=SUM+AM
IF(DABS(AMISUM).GT.1 .E-06)GOTO 10
Y=X'SUM/2.
RETURN
END

C
C*'M*****ODI FIED BESSEL FUNCTION, ORDER ZERO..
C

SUBROUTINE BESIO(X,Y)
IMPLICIT REAU8B(A-H,O-Z)
X2=X'X/4
DY=X2
Y=1+DY
M=0O

10 M=M+1
A--M+1
A2=A*A
DY=DY*X2IA2
Y=Y+DY
IF(DABS(DY/Y).GT.1 .E-06)GOTO 10
RETURN
END

C
C""*MODIFIED BESSEL FUNCTION, ORDER ONE ......

SUBROUTINE BESIl1 (X,Y)
IMPLICIT REAL-8(A-H,O-Z)
X2=X*X/4
DY=1.
SUM=DY
M=0O

10 M=M+1
A--M
A1=A+1.
DY-DYX2/A/Al
SUM=SUM+DY
Y=SUM*X/2
IF(DABS(DYIY).GT.1. .E-06)GOTO 10
RETURN
END

C
C* SUBPROGRAA TO CALCULATE SUM**********
C

SUBROUTINE SUM P(SUM,W,G2,A2,AK2)
IMPLICIT REAL-8(A-H,O-Z)
TPI-6.2831 8530717958
P12-TPI*TP4.
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02=AK2-P12(W-W/G2-1.)
P2=AK2-PI2*(W-W/A2.1.)
G--DSQRT(DABS(02))
P=DSQRT(DABS(P2))
TERMi 1 4*P*Q*AK2*PI2
TERM2=2.*P(Q2AK2* P12)
TERM3=(Q2-AK2'P12)'(Q2-AK2-P12)
IF(P2)20,1 0,10

10 CALL BESJO(P,BPO)
CALL BESJ1 (P,BP1)
CALL BESJO(Q,BQO0)
CALL BESJ 1(0,1301)
SUM=TERM 1 BQO/BQ1 -TERM2+TERM3*BPO/BP1
GOT0 50

20 IF(02)40,30,30
30 CALL BESIO(P,BIPO)

CALL BESI1(P,BIP i)
CALL BESJO(Q,BQO)
CALL BESJ1(Q,BQ1)
SUM=TERM1BTQO/BQ1 -IERM2-TF RM3*BIPC/BIP1
GOT0 50

40 CALL BESIO(P,BIPO)
CALL BES11(PBIPI)
CALL BESIO(Q,BIQO0)
CALL BESI1(0,13Q1)
SUM=TERM 1 BIQO/BIQ1 -TERM2-TERM3*BIPO/BlPl

50 CONTINUE
RETURN
END

Fig. F.3. Source Code for Lab Data Reduction Program - ROL
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IS01 Test Series, 19-21 April 90

Test Summary

Tes O c 0OR void
# psi psi psi ratioPs pi P

I et aIo Iv I I C 0,l0,i0,I.o 0I0s I s
Mode 1

1 4.13 3.96 4.02 0.594 0.239 31904 10924 27109 10939
2 8.17 7.99 8.05 0.594 0.215 40903 14926 36110 14866
3 16.17 16.00 16.06 0.594 0.194 53550 19841 48569 20344
4 32.18 32.01 32.07 0.593 0.215 71440 25820 62987 25911
5 64.16 63.98 64.04 0.592 0.089 97366 34491 95662 43910
6 32.18 32.00 32.06 0.593 0.215 72144 26765 63646 26192
7 16.17 16.00 16.06 0.593 0.193 52941 19703 48084 20161
8 8.17 7.99 8.05 0.594 0.197 37637 13582 34012 14211
9 4.15 3.98 4.04 0.594 0.197 26939 9232 24351 10176

10 8.19 8.02 8.07 0.594 0.189 36319 13660 33105 13916
11 16.18 16.01 16.06 0.593 0.184 50613 17921 46428 19612
12 32.15 31.97 32.03 0.593 0.201 69812 25514 62764 26133
13 64.17 63.99 64.05 0.592 0.000 96619 32668 96619 48309
14 32.18 32.00 32.06 0.593 0.199 71666 24919 64558 26916
15 16.18 16.00 16.06 0.593 0.180 51608 19364 47513 20127
16 8.18 8.01 8.07 0.594 0.167 36318 13426 33898 14528
17 4.17 4.00 4.06 0.594 0.198 26190 9123 23627 9861
18 16.18 16.01 16.06 0.594 0.184 50475 19433 46314 19567
19 64.14 63.97 64.03 0.592 0.000 97371 35628 97371 48686
20 16.18 16.01 16.07 0.593 0.168 52195 19365 48652 20826
21 4.21 4.04 4.09 0.594 0.188 25931 9081 23668 9960
22 64.15 63.98 64.04 0.592 0.000 97368 37527 97368 48684
23 4.20 4.03 4.09 0.594 0.188 25777 8891 23541 9910
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ISO1 Test Series, 19-21 April 90

Test Summary (continued)

Test a h o I void I
psi I psi I psi I rati I V ps i psi

Mode 2

1 4.13 3.96 4.02 0.594 0.238 31904 10924 27146 10961
2 8.17 7.99 8.05 0.594 0.213 40903 14926 36184 14914
3 16.17 16.00 16.06 0.594 0.191 53550 19841 48724 20456
4 32.18 32.01 32.07 0.593 0.183 71440 25820 65557 27699
5 64.16 63.98 64.04 0.592 0.184 97366 34491 89337 37743
6 32.18 32.00 32.06 0.593 0.181 72144 26765 66357 28089
7 16.17 16.00 16.06 0.593 0.186 52941 19703 48456 20433
8 8.17 7.99 8.05 0.594 0.200 37637 13582 33858 14103
9 4.15 3.98 4.04 0.594 0.232 26939 9232 23182 9412

10 8.19 8.02 8.07 0.594 0.192 36319 13660 33002 13842
11 16.18 16.01 16.06 0.593 0.183 50613 17921 46487 19656
12 32.15 31.97 32.03 0.593 0.172 69812 25514 64857 27682
13 64.17 63.99 64.05 0.592 0.165 96619 32668 90357 38796
14 32.18 32.00 32.06 0.593 0.166 71666 24919 66935 28705
15 16.18 16.00 16.06 0.593 0.174 51608 19364 47851 20389
16 8.18 8.01 8.07 0.594 0.179 36318 13426 33478 14196
17 4.17 4.00 4.06 0.594 0.227 26190 9123 22696 9248
18 16.18 16.01 16.06 0.594 0.185 50475 19433 46248 19518
19 64.14 63.97 64.03 0.592 0.166 97371 35628 90930 38989
20 16.18 16.01 16.07 0.593 0.178 52195 19365 48151 20431
21 4.21 4.04 4.09 0.594 0.220 25931 9081 22699 9300
22 64.15 63.98 64.04 0.592 0.162 97368 37527 91253 39258
23 4.20 4.03 4.09 0.594 0.219 25777 8891 22621 9281
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IS01 Test Series, 19-21 April 90

Test Summary (continued)

#e a o o a o void V I 

1 psi I psi ratio PP ps psi

Mode 3

1 4.13 3.96 4.02 0.594 0.223 31904 10924 27824 11376
2 8.17 7.99 8.05 0.594 0.188 40903 14926 37339 15714
3 16.17 16.00 16.06 0.594 0.171 53550 19841 49756 21239
4 32.18 32.01 32.07 0.593 0.164 71440 25820 66823 28696
5 64.16 63.98 64.04 0.592 0.156 97366 34491 91722 39659
6 32.18 32.00 32.06 0.593 0.156 72144 26765 68015 29432
7 16.17 16.00 16.06 0.593 0.161 52941 19703 49656 21379
8 8.17 7.99 8.05 0.594 0.176 37637 13582 34803 14796
9 4.15 3.98 4.04 0.594 0.199 26939 9232 24272 10121

10 8.19 8.02 8.07 0.594 0.178 36319 13660 33538 14242
11 16.18 16.01 16.06 0.593 0.162 50613 17921 47438 20411
12 32.15 31.97 32.03 0.593 0.153 69812 25514 65952 28600
13 64.17 63.99 64.05 0.592 0.143 96619 32668 92033 40272
14 32.18 32.00 32.06 0.593 0.145 71666 24919 68160 29773
15 16.18 16.00 16.06 0.593 0.151 51608 19364 48844 21221
16 8.18 8.01 8.07 0.594 0.163 36318 13426 33998 14611
17 4.17 4.00 4.06 0.594 0.193 26190 9123 23764 9958
18 16.18 16.01 16.06 0.594 0.164 50475 19433 47217 20278
19 64.14 63.97 64.03 0.592 0.140 97371 35628 92907 40735
20 16.18 16.01 16.07 0.593 0.156 52195 19365 49202 21289
21 4.21 4.04 4.09 0.594 0.190 25931 9081 23628 9930
22 64.15 63.98 64.04 0.592 0.137 97368 37527 93159 40981
23 4.20 4.03 4.09 0.594 0.189 25777 8891 23521 9895
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IS01 Test Series, 19-21 April 90

Test Summary (continued)

( Test I I o I void I -  I I t
ps si psi ratio pi pi P

Mode 4

1 4.13 3.96 4.02 0.594 0.000 31904 10924 31904 15952
2 8.17 7.99 8.05 0.594 0.000 40903 14926 40903 20451
3 16.17 16.00 16.06 0.594 0.000 53550 19841 53550 26775
4 32.18 32.01 32.07 0.593 0.000 71440 25820 71440 35720
5 64.16 63.98 64.04 0.592 0.000 97366 34491 97366 48683
6 32.18 32.00 32.06 0.593 0.000 72144 26765 72144 36072
7 16.17 16.00 16.06 0.593 0.000 52941 19703 52941 26470
8 8.17 7.99 8.05 0.594 0.000 37637 13582 37637 18818
9 4.15 3.98 4.04 0.594 0.000 26939 9232 26939 13470
10 8.19 8.02 8.07 0.594 0.000 36319 13660 36319 18160
11 16.18 16.01 16.06 0.593 0.000 50613 17921 50613 25306
12 32.15 31.97 32.03 0.593 0.000 69812 25514 69812 34906
13 64.17 63.99 64.05 0.592 0.000 96619 32668 96619 48309
14 32.18 32.00 32.06 0.593 0.000 71666 24919 71666 35833
15 16.18 16.00 16.06 0.593 0.000 51608 19364 51608 25804
16 8.18 8.01 8.07 0.594 0.000 36318 13426 36318 18159
17 4.17 4.00 4.06 0.594 0.000 26190 9123 26190 13095
18 16.18 16.01 16.06 0.594 0.000 50475 19433 50475 25238
19 64.14 63.97 64.03 0.592 0.000 97371 35628 97371 48686
20 16.18 16.01 16.07 0.593 0.000 52195 19365 52195 26098
21 4.21 4.04 4.09 0.594 0.000 25931 9081 25931 12966
22 64.15 63.98 64.04 0.592 0.000 97368 37527 97368 48684
23 4.20 4.03 4.09 0.594 0.000 25777 8891 25777 12888
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IS02 Test Series, 3-4 May 90

Test Summary

STest I Oa j Oh I oI voIdIl M  IEIN

Mode 1

1 4.18 4.01 4.06 0.760 0.310 25133 6376 18116 6913
2 8.19 8.01 8.07 0.759 0.312 34040 9796 24423 9309
3 16.16 15.99 16.05 0.759 0.294 43604 12643 32962 12740
4 32.18 32.00 32.06 0.757 0.286 57300 18353 44163 17170
5 64.14 63.97 64.02 0.756 0.218 80098 25063 70374 28892
6 32.18 32.00 32.06 0.757 0.296 58765 18221 44165 17042
7 16.16 15.99 16.05 0.758 0.307 43838 12791 31896 12200
8 8.18 8.01 8.07 0.758 0.309 31317 9423 22653 8652
9 4.18 4.01 4.07 0.759 0.306 22213 6191 16199 6200

10 16.17 16.00 16.05 0.758 0.300 43009 13103 31975 12301
11 64.17 64.00 64.05 0.756 0.210 79215 26142 70371 29079
12 16.17 16.00 16.05 0.758 0.279 41520 13181 32582 12741
13 4.18 4.01 4.06 0,759 0.301 22836 6041 16916 6501

Mode 2

1 4.18 4.01 4.06 0.760 0.303 25133 6376 18515 7105
2 8.19 8.01 8.07 0.759 0.289 34040 9796 26041 10101
3 16.16 15.99 16.05 0.759 0.263 43604 12643 35427 14026
4 32.18 32.00 32.06 0.757 0.242 57300 18353 48488 19528
5 64.14 63.97 64.02 0.756 0.247 80098 25063 67068 26883
6 32.18 32.00 32.06 0.757 0.254 58765 18221 48595 19375
7 16.16 15.99 16.05 0.758 0.278 43838 12791 34432 13468
8 8.18 8.01 8.07 0.758 0.292 31317 9423 23782 9204
9 4.18 4.01 4.07 0.759 0.299 22213 6191 16570 6380

10 16.17 16.00 16.05 0.758 0.272 43009 13103 34285 13479
11 64.17 64.00 64.05 0.756 0.233 79215 26142 68036 27597
12 16.17 16.00 16.05 0.758 0.250 41520 13181 34608 13845
13 4.18 4.01 4.06 0.759 0.309 22836 6041 16549 6324
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IS02 Test Series, 3-4 May 90

Test Summary (continued)

Testl o m I Io vod V M G Ei t# ° o, o, o I psi I psi ps rati Is psis
Mode 3

1 4.18 4.01 4.06 0.760 0.300 25133 6376 18698 7194
2 8.19 8.01 8.07 0.759 0.288 34040 9796 26095 10128
3 16.16 15.99 16.05 0.759 0.256 43604 12643 35901 14288
4 32.18 32.00 32.06 0.757 0.233 57300 18353 49169 19935
5 64.14 63.97 64.02 0.756 0.232 80098 25063 68854 27941
6 32.18 32.00 32.06 0.757 0.242 58765 18221 49701 20011
7 16.16 15.99 16.05 0.758 0.268 43838 12791 35206 13878
8 8.18 8.01 8.07 0.758 0.285 31317 9423 24187 9409
9 4.18 4.01 4.07 0.759 0.296 22213 6191 16707 6448

10 16.17 16.00 16.05 0.758 0.262 43009 13103 35017 13875
11 64.17 64.00 64.05 0.756 0.217 79215 26142 69664 28616
12 16.17 16.00 16.05 0.758 0.242 41520 13181 35136 14151
13 4.18 4.01 4.06 0.759 0.304 22836 6041 16796 6443

Mode 4

1 4.18 4.01 4.06 0.760 0.287 25133 6376 19341 7516
2 8.19 8.01 8.07 0.759 0.274 34040 9796 26985 10589
3 16.16 15.99 16.05 0.759 0.239 43604 12643 37058 14955
4 32.18 32.00 32.06 0.757 0.206 57300 18353 51167 21212
5 64.14 63.97 64.02 0.756 0.204 80098 25063 71745 29801
6 32.18 32.00 32.06 0.757 0.214 58765 18221 51888 21363
7 16.16 15.99 16.05 0.758 0.247 43838 12791 36705 14713
8 8.18 8.01 8.07 0.758 0.264 31317 9423 25412 10056
9 4.18 4.01 4.07 0.759 0.276 22213 6191 17547 6877
10 16.17 16.00 16.05 0.758 0.238 43009 13103 36591 14774
11 64.17 64.00 64.05 0.756 0.000 79215 26142 79215 39608
12 16.17 16.00 16.05 0.758 0.216 41520 13181 36602 15056
13 4.18 4.01 4.06 0.759 0.283 22836 6041 17724 6906
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BIAX1 Test Series, 5-6 May 90

Test Summary

Testj a I I o I void I M pEI # psi Ipsi psi ratio lv Mi I I I
Mode 3

1 4.00 4.01 4.01 0.762 0.317 27030 7218 19081 7245
2 15.98 16.01 16.00 0.760 0.263 45485 13724 36951 14629
3 18.29 16.01 16.77 0.760 0.258 47306 14421 38821 15430
4 21.32 16.01 17.78 0.760 0.267 51623 14834 41584 16411
5 25.54 16.01 19.19 0.760 0.267 55502 16197 44728 17654
6 31.90 16.01 21.31 0.759 0.275 61971 17137 49084 19254
7 33.03 32.01 32.35 0.754 0.247 62592 19764 52452 21032
8 64.00 63.99 64.00 0.759 0.236 83045 25556 70972 28717
9 32.00 32.00 32.00 0.760 0.242 61793 20074 52236 21027

10 28.46 32.00 30.82 0.760 0.240 57776 18663 49001 19755
11 25.64 32.00 29.88 0.760 0.253 56527 18335 46868 18707
12 23.33 32.00 29.11 0.760 0.258 54474 17578 44689 17760
13 21.40 32.00 28.46 0.760 0.251 50982 16811 42402 16947
14 16.00 16.01 16.01 0.762 0.265 45112 14344 36501 14429
15 4.00 4.01 4.01 0.763 0.328 26386 6639 17965 6766
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BIAX2 Test Series, 21-22 May 90

Test Summary

,Test cr j oh , f I oo I void ,V I i# !I psi I psi psi ratio I v psi psi s

Mode 3

1 4.01 4.00 4.00 0.775 0.301 28751 7728 21295 8184
2 15.99 16.00 15.99 0.773 0.228 44419 14854 38442 15653
3 64.00 64.00 64.00 0.770 0.194 77198 26902 70001 29317
4 16.01 16.01 16.01 0.772 0.232 42509 14432 36571 14846
5 4.02 4.00 4.01 0.773 0.287 24694 7585 19011 7388
6 16.00 16.00 16.00 0.772 0.229 42167 14208 36432 14822
7 18.31 16.00 16.77 0.772 0.242 46158 14939 39011 15702
8 21.39 16.01 17.80 0.772 0.240 49282 16315 41830 16871
9 25.68 16.01 19.23 0.771 0.229 52413 17397 45295 18430

10 32.09 16.00 21.36 0.771 0.238 58887 18714 50173 20272
11 32.10 20.00 24.03 0.770 0.233 60454 19631 51884 21037
12 32.08 24.00 26.69 0.769 0.229 60899 20164 52619 21408
13 32.04 28.01 29.35 0.767 0.226 61160 20185 53118 21670
14 32.00 32.00 32.00 0.764 0.224 61293 21004 53404 21824
15 64.00 63.99 63.99 0.763 0.198 80601 28172 72768 30384
16 32.02 32.01 32.01 0.765 0.209 59356 21005 52781 21824
17 25.54 32.00 29.85 0.765 0.213 53603 19581 47418 19545
18 21.20 31.98 28.39 0.765 0.218 49501 18232 43483 17850
19 18.15 32.00 27.38 0.766 0.216 44257 16799 38982 16027
20 15.81 32.01 26.61 0.767 0.221 39550 15550 34614 14180
21 15.84 28.01 23.95 0.767 0.220 39465 15456 34554 14158
22 15.89 24.00 21.30 0.768 0.225 39841 15243 34657 14151
23 15.96 20.00 18.66 0.770 0.235 40103 14559 34320 13896
24 16.00 16.00 16.00 0.791 0.243 40008 14200 33758 13578
25 4.00 4.01 4.00 0.796 0.300 22658 7120 16837 6476
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BIAX3 Test Series, 1-2 June 90

Test Summay

Test l Ga lh I ao I void V i G. E G# I psi I psi psi ratio psi ps i psi p~si

Mode 3

1 4.00 4.01 4.00 0.588 0.232 45072 15486 38743 15721
2 16.00 16.00 16.00 0.588 0.181 61930 22854 56968 24116
3 64.02 64.00 64.01 0.586 0.171 105440 39079 98008 41852
4 16.02 16.01 16.01 0.587 0.180 55430 21310 51073 21649
5 4.02 4.01 4.01 0.588 0.215 30916 11446 27264 11217
6 16.00 16.01 16.00 0.588 0.184 56090 21160 51427 21715
7 18.27 16.00 16.76 0.587 0.190 59684 22178 54361 22840
8 21.30 16.00 17.77 0.587 0.195 64450 23630 58339 24403
9 25.55 16.00 19.18 0.587 0.198 70038 24550 63230 26401

10 31.90 16.00 21.30 0.587 0.212 80158 26558 71062 29328
11 31.93 20.01 23.98 0.587 0.201 80457 27897 72330 30115
12 31.96 24.00 26.65 0.586 0.193 80514 28985 73119 30656
13 31.98 28.00 29.33 0.585 0.185 80540 29741 73740 31103
14 32.01 32.00 32.00 0.583 0.182 80931 30165 74357 31447
15 64.01 64.01 64.01 0.583 0.157 105620 39729 99433 42964
16 32.02 32.01 32.01 0.584 0.165 80935 30559 75631 32450
17 25.61 32.00 29.87 0.584 0.181 74041 28442 68136 28853
18 21.38 32.00 28.46 0.584 0.182 68425 27299 62906 26618
19 18.34 32.00 27.45 0.584 0.198 65447 25809 59061 24653
20 16.06 32.00 26.69 0.584 0.320 61516 24918 42943 16263
21 16.07 28.01 24.03 0.585 0.417 113340 24244 45598 16086
22 16.02 23.99 21.34 0.586 0.417 113270 23590 45577 16079
23 16.16 20.00 18.72 0.587 0.417 113180 22957 45549 16069
24 16.00 16.01 16.00 0.588 0.417 113050 21617 45510 16056
25 4.01 4.01 4.01 0.589 0.417 113080 11031 45514 16057
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BIAX4 Test Series, 2-5 July 90
Test Summary (Mode 2)

Test a ao void l M Gm E
# psi psi psi ratio ls I s I I psi

1 3.78 3.77 3.77 0.584 0.333 39383 11676 26272 9853
2 15.79 15.78 15.78 0.583 0.242 58981 22285 49877 20081
3 63.77 63.76 63.77 0.581 0.213 101740 38600 90052 37129
4 15.80 15.79 15.79 0.582 0.230 57587 22528 49695 20205
5 3.79 3.78 3.78 0.583 0.310 33502 10852 24193 9236
6 7.79 7.77 7.78 0.583 0.278 42638 14441 33505 13108
7 8.92 7.78 8.16 0.583 0.266 44191 15148 35695 14101
8 10.46 7.78 8.68 0.583 0.271 47565 16056 37979 14940
9 12.56 7.78 9.37 0.583 0.264 50492 17048 40906 16178
10 15.74 7.78 10.43 0.583 0.236 54779 18253 46778 18920
11 15.76 9.78 11.77 0.582 0.241 56398 20220 47787 19257
12 15.76 11.77 13.10 0.582 0.237 56740 21252 48388 19559
13 15.77 13.77 14.43 0.582 0.235 57087 21880 48863 19786
14 15.79 15.77 15.78 0.581 0.233 57441 22290 49337 20012
15 18.07 15.78 16.54 0.581 0.242 61544 23482 52049 20957
16 21.10 15.78 17.55 0.581 0.228 63455 24203 54909 22357
17 25.35 15.78 18.97 0.581 0.224 67560 25547 58786 24006
18 31.72 15.78 21.09 0.581 0.228 74752 26893 64708 26351
19 31.74 19.77 23.76 0.581 0.226 76037 28015 65986 26907
20 31.76 23.78 26.44 0.580 0.222 76318 28849 66702 27304
21 31.77 27.78 29.11 0.580 0.226 77661 29849 67458 27522
22 31.79 31.78 31.78 0.579 0.224 78231 30507 68114 27825
23 63.78 63.78 63.78 0.579 0.222 105130 40181 91883 37612
24 31.79 31.78 31.79 0.579 0.220 78769 30902 68948 28247
25 25.41 31.78 29.66 0.579 0.230 73379 29492 63287 25724
26 21.15 31.78 28.23 0.580 0.231 68085 28060 58623 23808
27 18.11 31.78 27.22 0.580 0.232 63346 26624 54496 22123
28 15.83 31.78 26.46 0.580 0.231 58737 25296 50572 20538
29 15.82 27.78 23.79 0.580 0.234 58894 24516 50472 20450
30 15.82 23.78 21.13 0.581 0.236 58520 24225 50022 20242
31 15.81 19.78 18.46 0.581 0.242 58665 23489 49587 19960
32 15.78 15.77 15.78 0.582 0.230 56591 22784 48853 19867
33 12.61 15.78 14.72 0.582 0.259 52985 21495 43382 17227
34 10.48 15.78 14.02 0.582 0.258 49030 20239 40221 15984
35 8.96 15.78 13.51 0.582 0.263 46226 19686 37544 14862
36 7.83 15.78 13.13 0.582 0.277 44568 18646 35136 13761
37 7.82 13.79 11.80 0.583 0.268 42660 17797 34296 13525
38 7.80 11.78 10.45 0.583 0.271 42538 17057 33980 13369
39 7.81 9.79 9.13 0.583 0.275 42521 15907 33639 13190
40 7.82 7.81 7.81 0.584 0.276 42077 14869 33262 13039
41 3.79 3.77 3.78 0.584 0.310 32742 10573 23592 9002
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BIAX4 Test Series, 2-5 July 90
Test Summary (Mode 3)

ITestoa h 0 oi

1 3.78 3.77 3.77 0.584 0.318 39383 11676 27692 10504
2 15.79 15.78 15.78 0.583 0.222 58981 22285 51475 21055
3 63.77 63.76 63.77 0.581 0.000 101740 38600 0 0
4 15.80 15.79 15.79 0.582 0.208 57587 22528 51302 21236
5 3.79 3.78 3.78 0.583 0.293 33502 10852 25402 9827
6 7.79 7.77 7.78 0.583 0.256 42638 14441 35096 13967
7 8.92 7.78 8.16 0.583 0.247 44191 15148 37063 14867
8 10.46 7.78 8.68 0.583 0.250 47565 16056 39613 15841
9 12.56 7.78 9.37 0.583 0.233 50492 17048 43354 17583
10 15.74 7.78 10.43 0.583 0.221 54779 18253 47879 19599
11 15.76 9.78 11.77 0.582 0.223 56398 20220 49167 20098
12 15.76 11.77 13.10 0.582 0.222 56740 21252 49585 20296
13 15.77 13.77 14.43 0.582 0.218 57087 21880 50146 20584
14 15.79 15.77 15.78 0.581 0.214 57441 22290 50718 20881
15 18.07 15.78 16.54 0.581 0.221 61544 23482 53844 22053
16 21.10 15.78 17.55 0.581 0.210 63455 24203 56405 23316
17 25.35 15.78 18.97 0.581 0.204 67560 25547 60480 25112
18 31.72 15.78 21.09 0.581 0.208 74752 26893 66548 27535
19 31.74 19.77 23.76 0.581 0.205 76037 28015 68032 28238
20 31.76 23.78 26.44 0.580 0.201 76318 28849 68618 28572
21 31.77 27.78 29.11 0.580 0.203 77661 29849 69606 28924
22 31.79 31.78 31.78 0.579 0.200 78231 30507 70388 29323
23 63.78 63.78 63.78 0.579 0.000 105130 40181 0 0
24 31.79 31.78 31.79 0.579 0.194 78769 30902 71424 29913
25 25.41 31.78 29.66 0.579 0.206 73379 29492 65544 27177
26 21.15 31.78 28.23 0.580 0.206 68085 28060 60807 25210
27 18.11 31.78 27.22 0.580 0.207 63346 26624 56536 23430
28 15.83 31.78 26.46 0.580 0.207 58737 25296 52359 21682
29 15.82 27.78 23.79 0.580 0.210 58894 24516 52303 21609
30 15.82 23.78 21.13 0.581 0.212 58520 24225 51874 21408
31 15.81 19.78 18.46 0.581 0.220 58665 23489 51393 21065
32 15.78 15.77 15.78 0.582 0.211 56591 22784 50240 20752
33 12.61 15.78 14.72 0.582 0.221 52985 21495 46374 18998
34 10.48 15.78 14.02 0.582 0.227 49030 20239 42517 17330
35 8.96 15.78 13.51 0.582 0.238 46226 19686 39347 15890
36 7.83 15.78 13.13 0.582 0.249 44568 18646 37184 14881
37 7.82 13.79 11.80 0.583 0.238 42660 17797 36291 14652
38 7.80 11.78 10.45 0.583 0.242 42538 17057 35979 14487
39 7.81 9.79 9.13 0.583 0.250 42521 15907 35462 14189
40 7.82 7.81 7.81 0.584 0.250 42077 14869 35061 14024
41 3.79 3.77 3.78 0.584 0.299 32742 10!73 24378 9382
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BIAX5 Test Series, 6-8 August 90
Test Summary (Mode 2)

Tes c I a0o void V M Gm E# psi psi psi ratio Ips psi ps

1 4.03 4.02 4.02 0.753 0.332 26411 7217 17721 6654
2 16.01 16.01 16.01 0.753 0.286 45456 15290 35053 13630
3 64.00 64.00 6400 0.749 0.242 80026 ,80a 7 67684 27252
4 16.02 16.01 16.01 0.752 0.288 45576 1b2",3 34966 13575
5 3.99 4.01 4.00 0.753 0.324 24451 6774 16879 6376
6 8.04 8.02 8.03 0.752 0.299 32282 9177 24054 9259
7 9.15 8.01 8.39 0.752 0.302 34509 9458 25470 9779
8 10.68 8.02 8.91 0.752 0.296 36789 12703 27617 10653
9 12.79 8.01 9.60 0.752 0.296 40443 13321 30418 11740

10 15.98 8.01 10.67 0.752 0.293 45537 14887 34498 13342
11 15.98 10.00 12.00 0.752 0.293 46320 15278 35110 13582
12 16.00 12.00 13.34 0.751 0.293 46729 15483 35383 13683
13 16.01 14.00 14.67 0.751 0.292 46881 15692 35611 13784
14 16.01 16.00 16.00 0.750 0.291 46902 15907 35711 13832
15 18.29 16.01 16.77 0.750 0.283 48253 16443 37499 14617
16 21.33 16.01 17.78 0.750 0.267 50836 17121 40985 16180
17 25.59 16.02 19.21 0.750 0.268 54949 18093 44214 17441
18 31.96 16.01 21.33 0.749 0.265 61108 19280 49431 19538
19 31.99 20.01 24.00 0.749 0.267 61727 20007 49698 1960,
20 32.01 24.01 26.68 0.748 0.266 61963 20318 49986 19737
21 32.02 28.02 29.36 0.747 0.263 62004 20637 50390 19953
22 32.01 32.01 32.01 0.746 0.260 62053 20967 50691 20112
23 64.00 64.00 64.00 0.745 0.245 82911 28842 69772 28029
24 32.01 32.00 32.00 0.746 0.257 62053 21127 50984 20274
25 25.61 32.00 29.87 0.746 0.258 55572 19762 45625 18138
26 21.34 32.00 28.45 0.747 0.256 50651 18527 41696 16594
27 18.31 32.02 27.45 0.747 0.267 45722 17289 36804 14520
28 16.01 32.00 26.67 0.747 0.263 41165 16393 33445 13241
29 16.01 28.01 24.01 0.748 0.264 41371 15854 33562 13280
30 16.02 24.01 21.35 0.749 0.265 41451 15435 33551 13264
31 16.01 20.01 18.68 0.750 0.264 41305 15322 33487 13247
32 16.00 16.00 16.00 0.751 0.273 42261 15108 33617 13207
33 12.82 16.01 14.94 0.752 0.271 37879 14186 30229 11889
34 10.70 16.02 14.25 0.752 0.281 34728 13186 27104 10580
35 9.18 16.01 13.74 0.752 0.283 31089 12081 24122 9398
36 8.04 16.02 13.36 0.752 0.276 28859 11229 22767 8918
37 8.02 14.01 12.01 0.752 0.275 28726 10864 22735 8916
38 8.03 12.01 10.68 0.753 0.278 28907 10514 22722 8890
39 7.98 9.98 9.32 0.753 0.281 29148 10178 22735 8872
40 8.01 7.99 8.00 0.755 0.281 29514 9653 23019 8983
41 4.02 4.02 4.02 0.755 0.320 22700 6759 15863 6009
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BIAX5 Test Series, 6-8 August 90
Test Summary (Mode 3)

Testj 00G Ia void V i G E# I psi I psi psi ratio ps psi psi p

1 4.03 4.02 4.02 0.753 0.317 26411 7217 18673 7092
2 16.01 16.01 16.01 0.753 0.268 45456 15290 36549 14414
3 64.00 64.00 64.00 0.749 0.000 80026 28037 0 0
4 16.02 16.01 16.01 0.752 0.268 45576 15263 36605 14430
5 3.99 4.01 4.00 0.753 0.303 24451 6774 17992 6902
6 8.04 8.02 8.03 0.752 0.283 32282 9177 25097 9784
7 9.15 8.01 8.39 0.752 0.284 34509 9458 26759 10423
8 10.68 8.02 8.91 0.752 0.278 36789 12703 28923 11317
9 12.79 8.01 9.60 0.752 0.281 40443 13321 31526 12301

10 15.98 8.01 10.67 0.752 0.280 45537 14887 35627 13917
11 15.98 10.00 12.00 0.752 0.278 46320 15278 36392 14237
12 16.00 12.00 13.34 0.751 0.276 46729 15483 36899 14459
13 16.01 14.00 14.67 0.751 0.274 46881 15692 37198 14601
14 16.01 16.00 16.00 0.750 0.271 46902 15907 37423 14718
15 18.29 16.01 16.77 0.750 0.259 48253 16443 39507 15688
16 21.33 16.01 17.78 0.750 0.256 50836 17121 41897 16681
17 25.59 16.02 19.21 0.750 0.258 54949 18093 45065 17907
18 31.96 16.01 21.33 0.749 0.263 61108 19280 49689 19679
19 31.99 20.01 24.00 0.749 0.258 61727 20007 50632 20121
20 32.01 24.01 26.68 0.746 0.255 61963 20318 51194 20404
21 32.02 28.02 29.36 0.747 0.251 62004 20637 51599 20628
22 32.01 32.01 32.01 0.746 0.247 62053 20967 52011 20857
23 64.00 64.00 64.00 0.745 0.000 82911 28842 0 0
24 32.01 32.00 32.00 0.746 0.243 62053 21127 52409 21089
25 25.61 32.00 29.87 0.746 0.240 55572 19762 47172 19026
26 21.34 32.00 28.45 0.747 0.242 50651 18527 42843 17251
27 18.31 32.02 27.45 0.747 0.238 45722 17289 38924 15720
28 16.01 32.00 26.67 0.747 0.238 41165 16393 35019 14139
29 16.01 28.01 24.01 0.748 0.240 41371 15854 35096 14151
30 16.02 24.01 21.35 0.749 0.242 41451 15435 35071 14123
31 16.01 20.01 18.68 0.750 0.242 41305 15322 34915 14055
32 16.00 16.00 16.00 0.751 0.252 42261 15108 35087 14013
33 12.82 16.01 14.94 0.752 0.248 37879 14186 31696 12701
34 10.70 16.02 14.25 0.752 0.254 34728 13186 28706 11443
35 9.18 16.01 13.74 0.752 0.260 31089 12081 25419 10088
36 8.04 16.02 13.36 0.752 0.256 28859 11229 23762 9457
37 8.02 14.01 12.01 0.752 0.256 28726 10864 23651 9413
38 8.03 12.01 10.68 0.753 0.261 28907 10514 23603 9363
39 7.98 9.98 9.32 0.753 0.264 29148 10178 23644 9355
40 8.01 7.99 8.00 0.755 0.263 29514 9653 23982 9495
41 4.02 4.02 4.02 0.755 0.294 22700 6759 17127 6616
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